This page contains a Flash digital edition of a book.
45.


The model used was the AcTUP V2.2L version of RAM, a PE model (described in Annex A), with the actual implementation based on RAMGeo. This has previously been benchmarked, with good agreement, against the slower RAMSGeo implementation which allows for shear wave propagation in the substrate.


46.


The results of the RAM modelling are shown in Plate 9.2 for the two transects diverging from the pile using the same environmental properties as outlined in Section 9.4.1. The modelling shows two important points:





The noise level, as a result of complex interaction of the sound wave with the seabed, can be several dB lower near the seabed compared to around mid- water column at ranges exceeding the first few km. The effect is potentially weakest where the seabed is rapidly up-sloping. The implication of this is that animals, which dwell on or near the seabed, such as some fish for example (e.g. demersal fish), would be exposed to sound pressures that are potentially lower than those predicted in the energy flux model described in Section 9.4.1 (this would also be true of the particle velocity component of the acoustic field). However, these are broadband levels and this generalisation would not be true at all frequencies. This model does also not account for the vibration travelling along the seabed, which may generate a surface wave in the sediment with a velocity or displacement component to which flat fish, for example, may be sensitive (Hawkins 2009). Whilst sound originating from the section of the pile below the sea bed would generally attenuate more rapidly that in the water, the surface wave travelling along the surface of the sea bed may generate particle velocity components to which flat fish would likely be sensitive (Hawkins 2009; Hazelwood and Macey 2012); and





The noise level close to the sea surface is tens of dB lower compared to the mid-water noise levels at relatively short distances from the pile. This would result in a reduced exposure of any animal travelling at the surface which would likely reduce the area of avoidance from the pile. It would also result in a substantially reduced SEL dose (further described in Section 9.4.6) for any animal which might swim away, from the sound source at shallow depth (i.e. near the surface).


Preliminary Environmental Information May 2014


East Anglia THREE Offshore Windfarm Appendix 9.1 Underwater Noise Modelling 13


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150