This page contains a Flash digital edition of a book.
9.4 Underwater Noise Propagation Modelling


9.4.1 Noise Propagation Model 27.


The underwater sound propagation modelling employed for this study has been undertaken by NPL. Potential impact ranges from pile driving have been estimated using an energy flux solution by Weston (1976), which is capable of propagation over large distances whilst accounting for range-dependent bathymetry. The energy flux underwater sound numerical propagation model has been implemented;


• •


• with the frequency-dependent absorption formula from Thorpe (1967);


including the effect of surface scattering (Coates 1988; Medwin and Clay 1998; Ainslie et al. 1994);


using sediment acoustics properties across the modelled area, which are representative of those expected to result in greater propagation distances (Hamilton 1980; Lurton 2003); and





using GEBCO Digital Atlas bathymetry data over an area extending approximately 100km around the windfarm boundary, augmented with higher resolution bathymetry data, where available (both lowest and highest astronomical tides are considered to ensure the longest propagation ranges are captured).


28.


For shorter range modelling, for the purpose of establishing injury ranges, a higher data resolution was used. The Weston energy-flux model assumes a homogenous sound speed profile which is often the case in coastal waters due to tidal mixing. The Weston energy-flux model has been benchmarked, with good agreement, against other transmission loss models published in the literature including the Range-dependent Acoustic Model (RAM) implementation of the parabolic equation (PE) solution (Collins 1993) based on AcTUP V2.2L (Maggi and Duncan 2010), an image source model (Urick 1983), a wavenumber integration transmission loss model (OASES), and a normal mode model (Kraken) and against measurement data. Validation of the Weston energy-flux model against measurement data is discussed in Annex B.


29.


The energy flux propagation model has been used to propagate an SEL source level to establish the SEL received level as a function of range. To derive a source level for use in the model, a monopole SEL source level was specified in TOB using a spectral source level shape taken from Ainslie et al. (2012) based on a broadband SEL source level calculated by De Jong and Ainslie (2008) from piling measurement data


Preliminary Environmental Information May 2014


East Anglia THREE Offshore Windfarm Appendix 9.1 Underwater Noise Modelling 8


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150