This page contains a Flash digital edition of a book.
East Anglia ONE


EMF Assessment


Table 8. Distances at which iE fields generated by AC cables attenuate below Earth’s background field induced by tidal flow (based upon 1m burial)


33kV


Distance (m)


0 75kV 0


3-core 132kV


220kV 0.5 – 1 5 – 10


1-core Trefoil 275kV


<Marginally further


1-core


separated 275kV


< Significantly further


iE fields induced around DC cabling will attenuate to background levels at the same distances as B fields (see Table 7) when considering tidal flow, since both depend on the same tidal flow flowing through the B fields; i.e. when the B field drops to the same level as the geomagnetic field, the iE field will also drop to the same level as the background electric field. These distances might be increased when considering fast-moving organisms, should their velocity be greater than the tidal flow considered.


How, or whether, the fields generated by the EAONE project may interact with background fields, and how they may be perceived by electromagnetically sensitive organisms is not certain. The current understanding is that whichever magnetic field (B field or geomagnetic) is more intense is likely to be more easily detected and therefore of greater interest to an organism (Andrew Gill pers. com.). Assuming so, once B fields attenuate to below the geomagnetic field, they may be less relevant to the organisms in question. However, owing to differences in the fields’ geometries and characteristics, and the fact that additive or subtractive interactions may occur, dependent upon their directions, the two fields may still be decipherable.


Similarly, once iE fields generated by AC cables attenuate to below the background (tidally induced) iE field, they may be less relevant to organisms, although owing to differences in geometries and interactions, the two fields may still be decipherable. Contrastingly, background iE fields and those generated by organisms’ movements around DC cables are likely to be of increasingly different magnitude, and therefore more decipherable, with increasing disparity in velocities. Should tidal flow and organism movement be of comparable velocities, the iE fields are likely to be of similar magnitude, and therefore possibly less distinguishable. However, once more, possible additive or subtractive interactions or geometric differences may increase distinguishable characteristics.


4.4. Magnetic anomalies


Another factor which can complicate interpretation of anthropogenic electromagnetic fields is the presence of magnetic anomalies; namely iron-bearing magnetic rocks. If the EAONE project location (Error! Reference source not found.) is compared with a map of seabed sediments in the relevant area (Figure 6), it appears the majority of sediment the cables are likely to be laid in/on will be medium sand, although there are patches of stony substrata. Site specific surveys of the East Anglia zone support the predominance of sandy gravel and gravelly sand with occasional areas of cobbles and boulders (MESL 2011). Whilst areas of medium sand would be unlikely to have significant relevance to interpretation of the effects of the EAONE project’s


J3184 EAONE v2 17


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150