RESEARCH HIGHLIGHTS
Bioengineering Heart-to-heart
Stem cells grown on a scaffold form new heart tissues and may lead to the creation of functioning bioartificial hearts
Scientists are one step closer to creating a functioning human heart grown from a patient’s own stem cells. By seeding cells on cadaveric hearts stripped down to their underlying structure, a team of researchers led by Andrew Wan and Karthikeyan Narayanan at the A*STAR Institute of Bioengineering and Nanotechnology1
(IBN) have produced two different types
of heart tissues, both of which will be needed to make a fully beating organ. The researchers set out with a simple question: could the
scaffold left behind in so-called ‘decellularized’ hearts guide pluripotent cells to form new heart tissues without the need for external cues? To find the answer, the researchers used the hearts of mice and removed all heart cells with a detergent solution, leaving just the extracellular matrix, a fibrous tangle made pri- marily of collagen protein and growth factors. Next, the researchers repopulated the scaffold with either human embryonic stem cells (ESCs), which can change into all cell types of the human body, or mesendodermal cells (MECs), which can give rise to heart cells only. After two weeks of culturing, the researchers characterized
the resulting cells in a laboratory dish and by growing the cells in mice, and found that both the ESCs and MECs expressed a number of key genes involved in heart muscle function. “This indicates that the signaling instructions present in the
extracellular matrix can direct pluripotent stem cells to differen- tiate to heart cells,” says Wan. However, there were some important differences between the tissues depending on the cell source. Only heart tissues derived from MECs expressed genes for the myosin light chain, a critical motor protein involved in muscle contraction, whereas those from ESCs preferentially expressed genes for the myosin heavy chain.
Independent analyses of stem cell-derived heart muscle tissues have shown that the more mature cells tend to favor the expression of the light chain over the heavy chain. Although the IBN team did not observe any beating cells in their scaffold, they believe that MECs alone would be the better choice as they are the more committed cell type. In addition to forming heart
A*STAR RESEARCH OCTOBER 2011– MARCH 2012
muscle cells, the seeded stem and progenitor cells also gave rise to endothelial cells, another crucial type of heart tissue, with the differentiated cell type ultimately dependent on where the implanted cells came into contact with the scaffold. The findings underscore the value of using pluripotent cells to generate a potentially limitless supply of bioartificial hearts. ■
1. Ng, S. L., Narayanan, K., Gao, S. & Wan, A. C. Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials 32, 7571–7580 (2011).
81
©
iStockphoto.com/IngramPublishing
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96