PHYSICAL & LIFE SCIENCE TECHNOLOGIES
Photonics
Integrated laser on silicon is looking good
A unique ‘micro-loop mirror’ design may enhance the performance of integrated laser on silicon
Active optical fibers with silicon photonic chips can carry a lot more information for data interconnect than copper cables. Silicon photonics can also be the material of choice for wiring ‘lab-on-a-chip’ devices — however, the construction of such devices is not without its challenges. One of the greatest dif- ficulties is the implementation of lasers because silicon is a poor light emitter, but is commonly required for a photonic system on chip. Doris Keh-Ting Ng at the A*STAR Data Storage Institute and co-workers have now successfully fabricated a laser on top of a silicon chip1
. The III-V semiconductor materials are bonded to
silicon to provide optical gain and the laser has a unique mirror design that promises enhanced device operation compared to the conventional feedback mirrors based on device facets. “Integrated Si/III-V lasers can take advantage of low-loss
silicon waveguides, while addressing the problem of low light emission efficiency that silicon devices typically have,” says Ng. Attaching a Si/III-V laser on top of silicon requires challenging fabrication techniques, and device performances can suffer as a result. Furthermore, any laser requires mirrors to maintain lasing action. Typically, such designs rely on the interface between air and the semiconductor, that is, the facets of the chip. These mirrors are not perfect and further reduce operation efficiency. To improve on the latter aspect, the researchers have now
come up with a unique mirror design, known as a micro-loop mirror (MLM). Light emitted from one end of the laser is guided along the waveguide, around a narrow bend and is then directed back into the device (see image). The mirror at the other end of the device is still formed by the interface with air, so that laser radiation can exit the device. The MLM achieves a remarkable 98% reflection efficiency of light. Such low losses mean that the MLM laser is comparatively efficient. The successful demonstration of this technique is remark-
able, considering that more than 30 fabrication steps are needed to fabricate the device, and in view of the fact that the MLM requires delicate and high-precision fabrication. The researchers aim to further enhance the laser, for example, by miniaturizing the device.
68 A*STAR RESEARCH OCTOBER 2011– MARCH 2012 1 µm
Scanning electron microscope image of the silicon-based micro-loop mirror. Light entering the waveguide from the left is guided around the loop and redirected back into the laser structure. The inset shows the laser spot photographed with an infrared camera.
“Further improvements, for example, at the interface between the mirror and the lasing structure itself could lead to even better performance,” says Ng. “Laser with lower threshold and higher output power can possibly be achieved, leading to a potential solution to develop high-speed and low-cost optical communications and interconnects on electronics chips.” ■
1. Zheng, Y. et al. Electrically pumped heterogeneously integrated Si/III-V evanescent lasers with micro-loop mirror reflector. Applied Physics Letters 99, 011103 (2011).
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96