RESEARCH HIGHLIGHTS
Microfluidics Sizing up cells
A numerical model could improve the performance of cell-sorting devices by predicting the paths taken by deformable cells
The ability to separate cells according to size and shape is useful in biological studies. One popular method of cell sorting involves the use of microfluidic devices consisting of a series of aligned micropillars. Such ‘bump arrays’ operate on the basis of allowing cells that are small enough to pass through narrow gaps, while cells that are too large undergo lateral displacement by bumping into the pillars. Blood samples, for example, can be separated into platelets, white cells and red cells using this technique. However, some particles that have deformable as opposed to rigid structures are prone to becoming ‘mis-sorted’, as they can bypass normal routes through the devices (see image). Keng Hwee Chiam and co-workers at the A*STAR Institute of
High Performance Computing have now completed a numerical study modeling ‘dispersive’ routes made in microfluidic devices by deformable particles1
. “We wanted to arrive at an understanding
of how cell deformability affects the device geometry and func- tioning, and hence help other researchers to optimize their devices in the future,” says Chiam. The researchers created a two-dimensional computer model to examine the different possible routes taken by cells through the device pillars. In experimental observations, rigid cells either follow a zigzag pattern through the pillars, or they bump into the pillars and drop to the bottom of the array, depending on their size. The new computer model can accurately predict these paths. In addition, the model can predict paths taken by large cells
or particles that can change shape and squeeze through the pillars. These were found to follow a far more random path, sometimes moving in zigzag directions, sometimes bumping into the pillars, and sometimes getting stuck completely. These so-called ‘dispersive trajectories’ are dependent on the orientation, arrangement and size of the pillars present in the device. Chiam explains: “This shows us what design parameters to avoid, and we imagine that numerical simulations, such as the ones used by the aerospace industry in aircraft design, could benefit future biological technologies.” The simulations could be improved by extending the computer model to a full three-dimensional representation of the cells and
A*STAR RESEARCH OCTOBER 2011– MARCH 2012
Deformable cells can squeeze between narrow gaps in a bump array of micropillars, leading to unpredictable paths in cell-sorting devices.
micropillars, but amassing the computational data required is currently cost-prohibitive. Chiam hopes, however, that future col- laborations will lead to a three-dimensional version of the model and adds that the research team aims “to simulate the sorting of DNA strands instead of cells, to see if they can be sorted accord- ing to their length and sequence.”
■
1. Quek, R., Le, D. V. & Chiam, K.-H. Separation of deformable particles in deterministic lateral displacement devices. Physical Review E 83, 056301 (2011).
73
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96