This page contains a Flash digital edition of a book.
RESEARCH HIGHLIGHTS


Drug delivery Temperature-regulated release Novel polymers release their drug cargo in response to body temperature


A critical step in advancing medical treatment is the develop- ment of novel drug delivery methods. While a simple tablet, taken by the patient with a sip of water, may be the easiest way to administer a drug, this may not always be the most suitable. Some drugs are subjected to degradation by the body, while others, such as cancer medications, can be more effective if they are delivered directly to the diseased tissue site. Such a delivery could improve the effectiveness of the treatment and potentially reduce side effects. Yiyan Yang and Jeremy Tan from the A*STAR Institute of Bioengineering and Nanotechnology, working in collaboration with researchers from the IBM Almaden Research Center and Stanford University in the USA, have reported the preparation of biodegradable, water-soluble polymers that can be loaded with the cancer drug Paclitaxel and injected directly into tumor tissues1


Warming to body temperature causes the release of the therapeu- tic cargo with the system showing improvement in killing cancer cells over treatment with the drug alone. Rather than being made from repeating units of a single


monomer, the polymers described are a type of block copoly- mer — a polymer with one block that contains hydrophilic and hydrophobic groups and another block that contains hydro- phobic groups. It is through the careful balance between these groups that the temperature-responsive property of the polymer is achieved. To make the copolymers, Yang and co-workers used the process of living polymerization, which allows the polymer chains to keep growing until the supply of monomer is exhausted. When more monomers are added, polymerization will restart. The approach allows polymers with different sized blocks of hydrophilic and hydrophobic groups to be built easily to optimize the properties. It also results in polymers with a narrow distribution of molecular weights — an important factor in producing polymers with con- sistent properties throughout a sample. Thermoresponsive polymers have been studied before, with one of the most intensively investigated being poly(N-isopropylacryl- amide) (PNIPAAm), which was first synthesized in the 1950s. The critical difference in the new polymers described by Yang


A*STAR RESEARCH OCTOBER 2011– MARCH 2012


.


and co-workers is that they are both non-toxic and biodegrad- able. “After these polymers performed their task of delivering their important cargos, they should break down and be excreted without significant additional side effects,” says Yang. “We are now planning to further work with the IBM Almaden Research Center and other industrial partners to evaluate the in vivo toxicity and efficacy of this system for the delivery of therapeutics.”





1. Kim, S. H. et al. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers. Biomaterials 32, 5505–5514 (2011).


55


© iStockphoto.com/saffetucuncu


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96