This page contains a Flash digital edition of a book.
ENGINEERING & NANOTECHNOLOGY


Nanomaterials A coating protocol


A robust approach for preparing polymer-coated quantum dots may find use in a wide range of applications


Quantum dots (QDs) are tiny crystals of semiconducting material that produce fluorescence. The color or the wavelength of the fluorescence is dependent on the size, shape and com- position of QDs. Larger QDs tend to emit light at the red end (longer wavelengths) of the electromagnetic spectrum. As the size of the QDs decrease, so does the wavelength of emitted light. This tunability of emission wavelength is one reason why QDs have become popular for use as fluorescent markers in biological research. For example, scientists can attach QDs to single molecules and cells and track their movements over time using fluorescence microscopy. Dominik Jańczewski, Nikodem Tomczak and Ming-Yong Han at the A*STAR Institute of Materials Research and Engineering and co-workers1


have now described a protocol for


the preparation of quantum dots coated with an amphiphilic polymer — a polymer that contains both water-attracting and -repelling components. “Our aim is to develop a robust approach for the preparation of QD for use as fluorescent tags for bioimaging, sensing and therapeutics,” says Han. “The method we have developed is applicable to any nanoparticles, not just QDs.” Most biological applications require the use of QDs that disperse and remain stable in an aqueous solution. Conventional approaches for synthesizing QDs typically endow the QDs with a coating of hydrophobic ligands, which are repelled by water. Although it is possible to exchange the ligands after syn- thesis, a ligand shell that is exchangeable is, by its very nature, unstable and might result in the release of toxic materials, such as cadmium, into solution. Instead of exchanging the ligands, an alternative method to make the QDs disperse in water is to coat them with a polymer that has both hydrophilic and hydrophobic parts. This works on the simple principle that like attracts like — or in other words, hydrophobic parts of the polymer attract hydrophobic ligands that stabilize the QDs, and hydrophilic parts of the polymer attract water molecules in solution. The new protocol describes the procedure in detail and aims to provide the benefits of the research team’s experience in QD


80 20 µm


Image of mammalian cancer cells incubated with red light-emitting quantum dots. The cell nuclei are stained blue.


synthesis to others whose interests might be focused more on applications rather than the development of synthetic methods. The synthesis of the polymer coating allows the incorporation of a wide variety of functional groups. “In the future we hope to work towards image guided therapy,” says Han. “QDs could be prepared that not only produce an image of cancer cells, but also release drugs at such a target.”





1. Jańczewski, D., Tomczak, N., Han, M.-Y. & Vancso, G. J. Synthesis of functionalized amphiphilic polymers for coating quantum dots. Nature Protocols 6, 1546–1553 (2011).


A*STAR RESEARCH OCTOBER 2011– MARCH 2012


From Ref. 1 © 2011 D. Jańczewski, N. Tomczak, M.-Y. Han & G. J. Vancso


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96