RESEARCH HIGHLIGHTS
Materials chemistry As good as gold
Reduced graphene oxide decorated with metallic nanoparticles shows high potential for gas detection
Graphene — carbon atoms packed in a honeycomb lattice — exhibits exceptional physical and electronic properties not found in conventional materials. Decorating the surface of graphene with nanoparticles may further enhance the performance of the material, but the fabrication technique is not without its challenges. Verawati Tjoa and co-workers at the A*STAR Singapore Institute of Manufacturing Technology and Nanyang Technological University1
have now demonstrated an easy way
to decorate the surface of graphene with gold nanoparticles. The resulting material is more sensitive and versatile than undecorated graphene for gas detection. Although high-purity graphene is obtainable through mechan-
ical exfoliation of high-quality graphite, this method is not suitable for large-scale applications. Tjoa and her team focused their attention on reduced graphene oxide (rGO), which is much more accessible and practical for applications, and studied how attaching gold nanoparticles can affect the physical properties of the material. They obtained gold-decorated reduced graphene oxide (Au-rGO) sheets by immersing graphene oxide sheets in chloroauric acid before chemical reduction. The formation of metal nanoparticles has actually been
reported before, but as Tjoa explains “[this work] is the first of its kind to study the electronic properties of these systems.” The electrical characterization immediately shows that the Au-rGO is positively doped and has lower conductivity than rGO. The lower conductivity is likely due to the scattering of charges on the metal nanoparticles. The positive doping can be ascribed to the transfer of electrons from the graphene oxide to the metal salt during formation of the gold nanoparticles, as was confirmed through Raman spectroscopy experiments. The researchers found interesting results when they exposed
the Au-rGO layers to various gases. In the case of hydrogen sulphide, a gas that acts as an electron donor, the conductivity of Au-rGO layers showed a sharp reduction, indicating the injection of electrons to the sheet, which in turn leads to a lower number of conducting holes. This current modulation under exposure to hydrogen sulphide is significant since unmodified graphene is sensitive to oxidizing gases such as nitrogen dioxide, but not
A*STAR RESEARCH OCTOBER 2011– MARCH 2012
Au H2
S
The attachment of hydrogen sulfide gas molecules to the graphene surface results in a drop in current
to toxic gases such as hydrogen sulphide. The sensitivity is also higher when gold nanoparticles are present, as they allow the injection of extra holes in the rGO plane, resulting in higher con- ductivity. The researchers also conducted additional experiments with silver-decorated rGO, yielding qualitatively similar results. The sensitivity of the nanoparticle-decorated material can be
tuned by changing the number of attached nanoparticles. “This work is the first demonstration of how the introduction of metal nanoparticles could lead to novel sensing capabilities in graphene,” says Tjoa.
■
1. Tjoa, V., Jun, W., Dravid, V., Mhaisalkar, S. & Mathews, N. Hybrid graphene–metal nanoparticle systems: electronic properties and gas interaction. Journal of Materials Chemistry 21, 15593–15599 (2011).
25
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96