This page contains a Flash digital edition of a book.
RESEARCH HIGHLIGHTS


Photonics Looking good


A passive alignment method offers an easy solution for fabricating integrated photonic circuits


The rise of computers in past decades was made possible largely thanks to the invention of the integrated circuit, a device that combines all necessary electronic components onto a single chip. In a similar vein, the success of optical computing is largely dependent on the possibility of integrating all essential optical components onto a single chip (photonic circuit). Lim Teck Guan at the A*STAR Institute of Microelectronics and co-workers have now developed an enhanced alignment solution for photonic circuits1


. “Our approach offers a highly


accurate, passive optical alignment solution for these devices,” says Guan. The fabrication of photonic circuits is no easy task because


there is little room for error. In order to get the best performance from these devices operating at the visible or near-infrared spectrum, various elements must be aligned with utmost preci- sion, typically within an error of around one micrometer. Even with the slightest misalignment, a microlens, for example, might not be able to focus light into a photodetector. The researchers came up with an alignment method that is


remarkably straightforward and easy to implement. It is based on a circular through-hole with two diameters (see image). The design of the larger hole is not critical and it can either partially or entirely accomodate the spherical lens, depending on the application requirement. A second hole in the chip is smaller than the sphere diameter so that if the lens is pressed against the opening the sphere will automatically be aligned in its center. In this way, light from underneath the chip is guided through the lens and the second hole, and on to a photodetector that is placed directly above. This guided assembly scheme makes it easy to fabricate more


complex photonic circuits, once the spherical lenses are inte- grated with the layer containing the through-holes. Electronic circuits of virtually any complexity can be placed on the chip with high accuracy, so that they align perfectly with the optical beam shone through the lens. The measured efficiencies of the light coupling between the


different components on the chip are promising and demon- strate light propagation with few losses. In the current assembly,


A*STAR RESEARCH OCTOBER 2011– MARCH 2012


Schematic of the circuits. Spherical microlenses (blue) self-assemble in optical through-holes (white). Electronic circuits (green) can easily be bonded and aligned on top of the lenses.


a laser is placed on a chip and through a combination of mirrors and microsphere lenses, the light is guided across the chip to a photodetector. However, the researchers have already set their sights on the advantages of further integration. “In future, we might come up with more complex circuits,”


suggests Guan. “These devices could lead to applications includ- ing high-speed, high-bandwidth integrated photonic circuits, particularly if we can integrate conventional silicon electronics with photonic functionality.”





1. Guan, L. T. et al. Integrated optical carrier for optical/electrical interconnect. IEEE Transactions on Components, Packaging, and Manufacturing Technology 1, 125–132 (2011).


53


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96