RESEARCH HIGHLIGHTS
Telecommunications Perfecting plastic
The rate of data transmission over plastic optical fibers can be increased by controlling modal dispersion with simple and robust tapers on each end
Plastic optical fibers offer a more efficient method of data trans- mission in telecommunications. While glass optical fibers allow very high data rates to be transmitted, they are expensive and difficult to work with. Twisted pair copper cabling, on the other hand, is cheap and easy to work with, but slow. Plastic optical fibers represent an intermediate solution, providing reasonable data rates at a low cost. To promote their wider usage, however, the data rates must first be improved. Pinjala Damaruganath and co-workers at the A*STAR Institute of Microelectronics and the Nanyang Technological University have now discovered a way to increase the data rates of plastic optical fibers1
. A plastic fiber typically supports thousands of different optical
modes, and each individual optical mode has a particular fre- quency and speed at which data propagate. Due to the differences in propagation speed, the data signal gets increasingly distorted as it travels down the fiber. If adjacent digital pulses overlap, the receiver might not be able to decode the data. This phenomenon, known as modal dispersion, is the principal factor limiting the data rates attainable in plastic optical fibers. Restricted mode launching is one widely used solution to
overcome modal dispersion. In this method, a light signal is launched into one mode or a small number of modes in the fiber. This is usually coupled with a mode filter at the receiver end of the fiber. Standard realizations of mode launching and filtering involve splicing or aligning a single-mode fiber to each end of a large-diameter fiber, but the task is time-consuming and the resulting system can be bulky. Using a mathematical model of transmission along their
fiber system, Damaruganath and co-workers designed a simple and compact tapered structure that can be attached to the two ends of a plastic optical fiber (see image). On the input end, the taper eliminates higher-order modes, and on the output end, its diameter matches the fiber at one end, and the size of the detector at the other end. This increases output coupling efficiency. In both cases, the slowly changing (or adiabatic) taper diameter suppresses different modes from interacting with each other. Measurements of the resulting optical system show that it can achieve a transmission rate of 2.5 gigabits per second — around
A*STAR RESEARCH OCTOBER 2011– MARCH 2012
A plastic optical fiber with tapered tips, each housed in a metal case (or ferule), can achieve data rates of 2.5 gigabits per second
16 times more than previously demonstrated data rates with similar-sized plastic fibers. The tapers are also mechanically robust and compatible with standard receiver connectors. The work is expected to hasten the adoption of plastic optical fibers into short-range telecommunication networks.
■
1. Chandrappan, J., Jing, Z., Jie, N. R., Damaruganath, P. & Lau, J. A pluggable large core step index plastic optical fiber with built-in mode conditioners for gigabit ultra short reach networks. IEEE Transactions on Advanced Packaging 33, 868–875 (2010).
71
© 2011 IEEE
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96