This page contains a Flash digital edition of a book.
26 CHAPTER 3


(Imbens and Wooldridge 2009), while the regression isolates the effect of xj over time.


In a typical two-stage estimation procedure, it is important to address the identification of the second-stage regression or the endogeneity of the first- stage regression. A procedure commonly used is the imposition of exclusion restrictions in the sense of excluding some of the explanatory variables used in estimating the first-stage probit from the second-stage regression (i.e., having x ⊂ w or x ≠ w and corr (w, ε/x) = 0), which is similar to finding appro- priate instruments or predictors for treatment or participation in the NAADS program. In general, nonlinearity of the first-stage probit model, as here, renders exclusion restrictions unnecessary for identification (Wilde 2000). Furthermore, because we apply a fixed-effect or difference estimator in the second-stage regression, the condition is satisfied in the sense that Δx ≠ w. However, we still used exclusion restrictions to improve identification of the second-stage regression and tested the validity of the excluded variables using Hansen’s (1982) chi-squared test of identification. A critical feature of this combined estimator is that the sample of treated and comparison observations is restricted to be the same as in the matching estimator. Therefore, the 2SWR is estimated using the propensity scores (as weights) and samples associated with the different matching procedures, i.e., one, three, and five nearest-neighbor matches. The 2SWR estimator was used to estimate the impact of the NAADS program on several outcome indicators


mentioned earlier as well as to analyze the contribution of various factors (xj) on the different outcome indicators. Two different types of regressions were employed in the second-stage estimation depending on the type of dependent variable, how it was measured, and whether it was measured in both time periods. For dichotomous variables measured in both 2004 and 2007 (e.g., adoption of new crop and livestock enterprises and adoption of selected crop and livestock technologies and practices), we used the fixed-effects probit; otherwise (e.g., for demand of advisory services measured in 2007 only) we used the random-effects specification. For the other indicators that were measured as continuous variables, including crop and livestock productivity, market participation, and agricultural revenue, we used the first-difference fixed-effect regression.


The conceptual framework presented in Chapter 2 shows that change in some outcome indicators can affect change in other outcome indicators. For example, change in agricultural productivity (Q) can cause change in market participation (MKT), which together with change in agricultural productivity can cause change in income (INC). This means that the issue of simultaneity is important in estimating the structural model for each outcome variable. We avoid this problem by using the reduced-form single-equation approach,


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192