This page contains a Flash digital edition of a book.
product news/產品新聞


are hardened via ultraviolet light. Because an older wood pattern was the only model for the


500-lb. impeller, Tech Cast needed to generate a 3-D drawing for production of the mold. (Te 3-D printing was handled by a third party.) Despite having to generate a 3-D model from scratch, Tech Cast produced two impellers in corrosion-resistant martensitic stainless steel at nearly equal cost in half the time as the traditional method. “It took us about two weeks to produce an SLA prototype,”


said Shawn McKinney, general manager, Tech Cast. “Actual manufacturing time, from receipt of the prototype to delivery of the casting, was four weeks.” Cast nearly to net shape, the components required signifi-


cantly less machining and avoided the time consuming welding/ grinding loops that typically were necessary with green sand casting. In all, the lead time dropped to six weeks from the previous 12 weeks. Additionally, no defects were discovered on the impellers. Te order was relatively small, but Tech Cast’s ability to


produce the castings quickly and cost effectively has resulted in additional opportunities with SPX. “Tat was the biggest, toughest impeller we could find,


and not only did the process work, but it came out better than anything we’d ever seen for that size,” said Dan Crumrine, buyer, SPX. “We took a huge chance and it paid off beautifully.” While Tech Cast plans to continue to receive its 3-D molds


from an outside vendor, additive manufacturing can reduce tooling costs and lead times, which can make investment casting more competitive by reducing lead times for short-run components. “Traditional investment cast tooling can take 8-12 weeks to build and may require significant capital investment, both of which can present barriers to entry into this manufacturing process,” McKinney said. “Te use of additive manufacturing technology to produce quality investment castings represents an area of organic growth opportunities for investment casting manufacturers to expand their businesses.” 


模型生产产品的增材制造工艺。


因为这个226.8公斤的叶轮的模具是一套使用期限较 长的木模,Tech Cast公司需要生成用于生产模型的三 维图纸。(3D打印由第三方完成)尽管不得不从草图 生成三维模型,Tech Cast制造了2个材质是耐蚀马氏体 不锈钢的叶轮。与传统工艺相比,这种方法成本接近、 周期是以前的一半时间。 “SLA快速原型的制作花了两周时间”,Tech Cast 总经理 Shawn McKinney说:“从原型的接收到铸件 交付,实际的生产时间是4周”。


铸态接近净成型,值得注意的是铸件需求的机加工很 少,而且避免了采用湿型砂工艺中的焊补、打磨环节的 时间消耗。总计的交货期从12周缩减到6周。此外,叶 轮上没有发现缺陷。 订单相对很小,但是Tech Cast快速、高效生产铸件 的能力使公司得到了SPX的订单。


“这是我们发现的最大且坚固的叶轮,不仅表现在工 艺中,事实证明这是我们所见过的如此大尺寸的叶轮中 表现最好的,”SPX采购人员Dan Crumrine说:“我 们冒了很大的风险,也达到了非常好的效果。” Tech Cast公司计划继续接收外部买家的3D模型订 单,增材制造工艺能够缩减加工成本及生产周期,交货 周期缩短可以提高生产短期精密铸件的竞争力。 “传统的精密铸件的生产通常需要8-12周而且需要 巨大的资金投入,两者都会造成市场壁垒”,McKin- ney 说:“使用增材制造技术生产高质量的精密铸件,


为精铸件厂家拓展市场提供了更具活力的发展空间。 


Gas-Heated Furnace with Combustion Air Blower 有助燃空气吹风器的气体加热炉


Te No. 862 from Grieve, Round Lake, Ill., is a gas-heat-


ed, 2,000F (1,093C) furnace currently used for preheating molds. Four modulating natural gas burners with a floor- mounted combustion air blower are capable of 750,000 BTU/hr. Workspace dimensions are 36 x 48 x 36 in. Te unit has insulated walls composed of 5-in. 2300F


ceramic fiber and 2-in. block insulation. Te 7-in. floor insulation includes 4.5 in. of 2,300F (1,260C) firebrick and 2.5 in. of block insulation. Controls onboard the No. 862 include an automatic door switch to drive burners to low fire when the door is opened and an air-operated vertical lift door. Safety equipment required by the Indus- trial Risk Insurers, FM Approvals LLC and the National Fire Protection Association’s standard 86 for gas-heated furnaces is also included. 


美国伊利诺伊州Grieve公司的No. 862是一台用于预 热铸型的气体加热炉(1093℃)。4个调节天然气的燃 烧器带有一个底部安装的能效达791兆焦/小时的助燃空 气吹风器 。工件尺寸为0.9×1.2×0.9米。 这套装置有0.13米厚的耐高温达1260℃的陶瓷纤维 的隔热层、0.05米厚的隔离层。0.18米厚的底层隔热层 由0.11米厚耐热1260℃的耐火砖以及0.06米的隔热层构 成。随No. 862自带的控制装置包括一个可以在门打开 时能调低火力的、气动垂直提升的自动门。安全设备也 达到了工业风险保险公司、FM认证公司和国家防火协 会对于气体加热炉的第86条标准的要求。 


June 2014 FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION | 67


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81