Table 3. Percent Change From Baseline When Using Coke Replacements
Anthracite Fines (20% replacement)
Energy Fossil
Non-fossil Emissions
Greenhouse gas Criteria pollutants Particulates VOCs
Materials
Coke (as alloy) Ferro-alloys
Costs
Energy Labor
Materials
Other costs Total
Projected Payback (in years)
-5.6 –
-0.5 –
-0.9 0
-14 –
-1.3 –
-2.2 0
-19.6 3.8
-9.5
-157.1 -20.6 2
– -5.8 – -11.5
-100 –
-0.4 -3
-3.3 -0.3
Foundry Facility
-0.6 -7.5 -8.3 -0.7
-2.8
-14.9 -3.3 -1.3
-0.6 -0.6
Anthracite Fines (50% replacement)
Total System (including upstream)
-1.5 -1.5
-3 -3
Pyrolyzed Bituminous Coal Bricks
Melting Breakdown: Electric Induction Furnaces vs. Cupolas
Because cupolas are charged with limestone, they can
accommodate scrap iron and carbon sources with higher proportions of impurities. Batch electric induction furnaces use electricity for melting and require more expensive (i.e., purer) iron and carbon sources for alloying. Overall, an elec- tric induction furnace requires 207% more fossil energy and 207% more non-fossil energy to melt iron (see Table 2). Tis energy demand is profoundly higher because of the relative inefficiencies in transmitting electrical power and in convert- ing heat energy to electrical energy and then back to heat energy. Te induction furnace’s actual cost of energy, however, is only 9.7% higher than the cupola because the metallurgi- cal coke in cupolas costs considerably more than electricity produced in coal-fired power plants. Cupolas impact the local environment via air emissions, while electric induction furnaces generate fewer emissions. Sev- eral facilities have replaced cupolas with electric induction fur- naces in response to local air quality rules that limit emissions, but this is not favorable in regard to overall life cycle. Replacing a cupola with an electric induction furnace merely transfers emissions upstream to the electricity-producing sector, as illus- trated in Table 2. While emissions of particulates are lower for the electric induction furnace, life cycle emissions of criteria air pollutants increase 150% when electric induction furnaces are used. Greenhouse gas emissions are 58% higher, and VOCs are 88% higher. Tis is a classic example of how local air pollution standards can have indirect and deleterious effects on national emissions. Operating costs for batch induction furnaces increase 1.7% relative to the cupola furnace. (Note: Tese findings reflect Wisconsin’s electrical generation system and could differ in locations with lower power sector emissions and/or other non- fossil fuel energy sources.)
较纯的)铁料和碳源来使之合金化。总的来说,电感 应炉熔炼铸铁需要的化石能源和多207%,非化石能源 多207%(见表2)。由于电力输送的效率较低,热能 转化为电能,电能又反过来转化为热能的效率也比较 低,因而,感应电炉熔炼铸铁的能耗肯定较高。由于 冲天炉所用的冶金焦炭成本比燃煤电厂发电高得多, 感应电炉的实际能源成本只比冲天炉高9.7%。 冲天炉排放的气体影响当地环境,而电感应炉产生 的排放物较少。为了符合当地限制排放的空气质量规 定,一些企业已经用电感应炉取代了冲天炉,但是就 整个生产循环来说,这是不利的。用电感应炉代替冲 天炉,只能将气体排放转移到上游——发电的环节, 如表2所示。电感应炉排放的颗粒物较少,而在生产活 动范围中,空气污染物的排放指数增加150%,温室气 体排放高58%,挥发性有机化合物的排放高88%。这 是局地空气污染标准如何对全国排放气体产生直接和 有害的影响的一个典型例子。与冲天炉相比,分批熔 炼的感应电炉运营成本增加1.7%。
(注:这些研究结果只反映威斯康辛州的发电系统 的情况,与电力行业排放较少的地区和/或其他非化石 能源地区的情况可能有所不同。)
废气排放检测:使用无烟煤细粒代替焦炭
生产焦炭时,要将烟煤加热到1652-1832℉(900- 1000℃),经28-30小时,消耗15-20%原煤的能 量,并释放等量碳当量的温室气体和挥发性有机混
June 2014
FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION | 51
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81