search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Test & measurement safety and equipment uptime. T By making a manufacturing plant or process


smarter, customer expectations are also met with greater swiftness. This could include the creation of more tailored, bespoke products to fit specific needs, which would otherwise be inefficient or unprofitable to manufacture. In highly competitive sectors, having a smarter, more agile mindset could be the make-or-break difference between staying ahead or falling behind the curve. But when it comes to executing smart methodologies at the production level, what technologies are available?


DETECTING DISTANCE Position sensing is a crucial element of many smarter manufacturing processes, particularly with enabling factory automation. Tasks like pick-and-place or product assembly require the equipment to very accurately know its position in order to move precisely - information that can be obtained using position sensors. Depending on the type, these sensors may determine an object’s position either directly by finding its absolute location, or indirectly by measuring its relative displacement.


One common example is the inductive position sensor. Relying on principles of electromagnetic induction, these position sensors allow for non-contact detection of metallic objects. Conductive targets cause disturbances in the magnetic field, which are detected by the sensing element. Because only metallic objects will affect the magnetic field, inductive position sensing cannot be used to detect non-metals like plastic. But the upside of this is that the sensor is less likely to be affected by dust or dirt build-up because these will not affect the magnetic field. This makes them ideal for operation within dirtier industrial environments.


Another type is the optical position encoder. These typically consist of an LED and photodetector, with either an optical disc or scale depending on whether the encoder is measuring linear or rotary displacement. Optical encoders can perform to high resolutions, making them ideal for applications where high precision matters, such as a CNC machine. When photons of light are captured by the photodetector, a weak electrical signal is generated. This must be amplified using a signal-conditioning circuit before being digitised with an analogue-to-digital converter (ADC). It can then be received by a CPU or microcontroller, which is able to calculate object position based on the signal. The processing unit is capable of recognising events such as reference marks being passed and can immediately take remedial action within a closed-loop system.


76 he concept of smart


manufacturing has been around for some time. Essentially, its aim is to make processes more efficient and adaptable to changing market needs. This is all achieved while maintaining high production quality, worker


MAKING MANUFACTURING SMARTER WITH ASICS


Ongoing supply chain issues, skill gaps and ever- changing customer demands mean that now - more than ever - manufacturers are increasingly adopting ‘smart’ manufacturing mindsets to keep up. In this article, Richard Mount, director of Sales at ASIC design and supply company Swindon Silicon Systems explores the role of position sensors within smart manufacturing, and how ASICs can drive the technology further forwards.


September 2023 Instrumentation Monthly


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102