search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Filtration & fl uid control


gonadotropin (hCG) hormone detected in the urine of pregnant women, the viral load present in a Covid-19 swab can vary significantly. Without an amplification method, such tests are always going to be less sensitive to lower viral loads than RT-PCR. The lack of amplification means that paper lateral flow tests typically have low sensitivity – the ability of the test to correctly identify those patients with the disease – so, a large amount of antigen is required to trigger a positive band. Another challenge is lateral flow tests typically only detect a single biomarker, so they can only be used to rule out one disease at a time. More sophisticated microfluidic tests typically use miniscule channels encased in glass or silicon.


For decades, point-of-care diagnostics have been heralded as the answer to global healthcare challenges. LOC technology could perhaps have the most impact in detecting infectious diseases in developing countries, where healthcare facilities and diagnostic laboratories are in short supply. However, most low-income countries are still yet to see meaningful adoption of LOC tests despite the years of research investment.


Making microfluidics One reason for the lack of uptake is that the technology required to manufacture sophisticated microfluidic tests is very expensive, points out Robert Hughes from the department of mechanical engineering at the University of Bristol, who studies the mechanics behind point-of-care diagnosis. “The researchers in the developing world often don’t have the agency and the tools to make use of these technologies,” he says.


LOC tests contain micro-scale channels that are often around the width of a human hair. Fluid is controlled, manipulated, and analysed within these channels. But manufacturing the tiny passageways is costly. The most common method involves a process called photolithography, which uses a beam of photons to etch channels into silicon wafers. This technique produces a master mould of the microfluidic system. Next, a biocompatible polymer such as polydimethylsiloxane (PDMS) is poured


Medical Device Developments / www.nsmedicaldevices.com 95


over the mould, peeled free and then bound to glass. Photolithography can even produce high- resolution channels at the nanometre scale. But the method is time-consuming – and the cost is considerable. This makes the widespread research and development of LOC technology near impossible for all but the wealthiest of research institutes, says Hughes.


“The researchers in the developing world often don’t have the agency and the tools to make use of these technologies.”


Robert Hughes


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170