Filtration & fl uid control
Almost perfect It’s generally accepted that the gold standard in face coverings is the N95 and FFP2 (and the similar FFP3) respirators, on account of their exceptional filtration efficacies. However, before the outbreak of Covid-19, researchers in Singapore were already working on achieving even higher performance. Associate professor Liu Zheng from Nanyang
Technological University (NTU) developed a now- patented reusable ‘nanotech’ facemask that attracts and traps nanoparticles. He and his team developed a method to manufacture a fabric polypropylene material – like that used for disposable surgical masks – with dielectric properties integrated into plastic fibres. “That means when we breathe through it, the mask vibrates and that will generate electric charges on the fabric, and those charges will attract small particles from the breath and trap them, which makes the filtering efficiency very high,” Liu explains. “Also, the fabric is very light – much thinner than fabric in the market – so the resistance [to breathing] is very low compared with commercially available masks.” Testing showed the composite fabric has 50% higher filtration efficiency than standard polypropylene masks (like the N95) and filtered up to 99.9% of particles as small as 0.3µm. The fabric’s fibres measure just 200 to 300nm in diameter, meaning it’s far less dense than the
WHEN CO
comparable N95 respirator and, therefore, easier to breathe through and more comfortable. It is also reusable and can be washed up to ten times. However, working with fellow scientists at NTU, Liu was able to further improve the efficacy of his face masks by combining it with an antimicrobial copper coating, developed by his colleague, Professor Lam Yeng Ming. The solution comprises millions of tiny nanoparticles, which collectively provide a much larger surface area for virus and bacterium to encounter, and the copper then induces oxidative damage to viral and bacterial cells. In tests, researchers introduced the coated fabric to droplets of multi-drug-resistant bacteria, which were dead within 45 seconds. Combining the two developments, the nanotech fabric traps bacteria and virus particles and the antimicrobial coating kills them on contact, making a unique and superior face covering. With the science in place, Liu wanted to make the technology widely available. “After the pandemic started, we had done the fundamental research, but we realised we needed to focus on the scalability of our product,” he says. “Making a few masks and making thousands or millions of masks is a different thing. We are almost at the stage of mass production: we already have a prototype, and the technology is ready for large-scale production. It will be very soon that we see it in the market.” ●
WHEN CONTACT S I IS NOT AN OPTION:
50% NTU
Higher fi ltration effi ciency with composite fabric than the standard polypropylene masks, such as the N95,and fi ltered up to 99.9% of particles as small as 0.3µm.
NOT AN OPTION: Introtek – The Trusted Source forIntrotek – The Trusted Source for Non-Invasive
– Occlusion Sensors Flow Sensors
Non-Invasive Medical Sensor Solutions. Medical Sensor Solutions.
Drip Chamber Liquid Level & Drip Detect Sensors Air Bubble & Air-in-Line Sensors Blood Component Sensors IntroPro™ IntroFlow™
Continuous & Single Point Level Sensors
AMETEK Introtek International • 150 Executive Drive • Edgewood, NY 11717 • Ph: 631.242.5425
IntrotekAd_MDD_Oct2021_178x124mm.indd 1 Medical Device Developments /
www.nsmedicaldevices.com
introtek.com 10/15/21 7:30 AM 105
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170