search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Coatings & surface treatment 75%


Centers for Disease Control and Prevention


UTIs acquired in the hospital that are associated with a urinary catheter.


surfaces by infiltrating porous or roughened substrates with various liquid perfluorocarbons. This prevents adhesion to the underlying substrate through the formation of a stably immobilised, molecularly smooth, liquid overlayer. Non-stick, ultra-repellent and self-healing, SLIPS provided a promising starting point for a catheter coating. But it also relies on a thin liquid layer on a hard surface, and in a complex and hostile biological system that approach doesn’t work well. So, Howell proposed an infused biocompatible polymer with both liquid on the surface and a bulk of liquid beneath it. When the liquid on the surface is removed, more moves up from within the polymer to replace it. “Liquids don’t like to stay in place under force and pressure,” says Howell. “So, we wanted to get a liquid to stay in place using surface chemistry to increase the affinity of the catheter’s surface. It is more energetically favourable for the liquid to stay in contact with the catheter than for contaminants to stick to it.”


In vivo tests show that the technology works well in the body and on the laboratory bench. In mice, the liquid-infused coatings prevented 95% of proteins from binding to the catheter. “The catheter is so slippery that it also prevents damage to the bladder, which in turn prevents protein recruitment,” adds Flores-Mireles. “Now, we can target multiple pathogens with one technology, which is better than developing new vaccines or anti-microbials.”


Like SLIPS, the new technology devised by Howell and Flores-Mireles is inspired by the Nepenthes pitcher plant, which uses a liquid membrane to trap insects. Previously, state-of-the-art liquid repellent surfaces have been modelled on lotus leaves, which have rough, waxy surfaces that are extremely hydrophobic. However, materials inspired by lotus leaves are less effective against oils, cannot self-heal and are fragile under stress.


“We can target multiple pathogens with one technology, which is better than developing new vaccines or anti-microbials.”


Ana Lidia Flores-Mireles


“Nature has had billions of years to create innovative solutions,” remarks Howell, whose group, Inspired by Nature, works to understand and ultimately control biological systems through surface interactions and other environmental factors. “Imitating nature is the best way forward


90


for addressing many challenges. Our materials science can now replicate the properties of natural materials with a high degree of fidelity.” For application in catheters, the project is still in its early days. The NIH is providing funding to test the safety and efficacy of the technology, though development of a commercialised product may take five or ten more years.


Inspiration everywhere


Howell and Flores-Mireles are certainly not alone in carrying forward the potential of novel coatings to improve the performance of medical devices used inside the human body. Another recent innovation stems from a research team at the Peter the Great St. Petersburg Polytechnic University, where Maxim Maximov, of the school’s Institute of Mechanical Engineering, Materials and Transport, has led the development of a coating for titanium implants to improve osseointegration. Working with colleagues from St. Petersburg State University, Maximov’s team sought to accelerate the integration of titanium implants into bone tissue. Its solution was to create a new method for applying a uniform layer of titanium oxide, at the nanometre scale, on to titanium carcass structures that can be used as implants. A range of coatings, which were applied using atomic layer deposition (ALD) in a vacuum, were extensively tested by the research team in varying compositions, thicknesses and structures, and it was found that if a layer of silver nanoparticles was applied first, the implants benefited from the element’s natural antibacterial properties. The result is not only better osseointegration, but also a greatly reduced risk of implant rejection. According to the research group, the key factor in the successful use of silver nanoparticles is size and morphology, which need to be chosen to prevent toxicity while maintaining the material’s beneficial properties. “We started applying silver nanoparticles on the surface of titanium, since this chemical element obtains useful antibacterial properties and should reduce the risk of implant rejection,” said Denis Nazarov, Research Park, St. Petersburg State University in a statement. “However, to use the silver coatings freely, it is necessary to adjust the conditions and the general method of obtaining the material.” Whether inspired by nature or driven by the known properties of chemical elements, innovation in medical device coatings is moving forward apace. The challenges they face are numerous – ageing populations, antibiotic resistance and unprecedented reliance on implanted devices – but the research looks promising. ●


Medical Device Developments / www.nsmedicaldevices.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170