search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Filtration & fluid control The best mask for the job


The team selected 32 different types of face coverings designed for use in hospitals. They included cloth masks, surgical masks, face shields and respirators. Some of these met quality standards set by the EU and China, while others did not. In the first experiment, the masks were attached to a tube inside an airtight tank, which was pumped with an aerosol containing the chemical di-ethyl-hexyl-sebacate (DEHS). These particles were 0.5µm – thought to be representative of SARS-CoV-2 particle clusters. The particles that made their way through into the tube were counted, which gave a measurement of how the material prevented outside particles from filtering through. This experiment confirmed the high filtration efficacy of KN95 and FFP2 respirators as 94% and 98%, respectively. However, as measured in the second part of the study, they also showed a drop in pressure (32.3PA/cm² for KN95 and 26.8PA/cm² for FFP2) consistent with inhalation and exhalation resistance. In the third part of the experiment, the same set-up was used to explore the ‘as-worn’ filtration efficacy, but the masks were affixed to a life-sized dummy head with a skin-like coating and an artificial trachea, rather than an air-collecting tube, to mimic the conditions of wearing the mask. KN95 respirators performed worse than expected, filtering just 41% of particles, with the FFP2 type filtering 65%. The former produced similar results as surgical facemasks, whose as-worn filtering efficacy was 47% compared with a material filtration efficacy of 70%, and a comparatively low pressure drop of 12.9PA/ cm². The worst-performing coverings overall were cloth masks, indicated by a material and as-worn filtration efficacy of 28% and just 11% respectively. However, the pressure drop was as low as 6.9PA/cm², meaning breathability was markedly higher than other masks. The study’s authors concluded that the best benefit of a face covering is achieved by both good filtration and breathability, as indicated by a low pressure drop. “If you have a high filtration efficacy, in most cases you also have a large pressure drop because of the breathing resistance of the mask material,” says Gunther. These masks, therefore, may be less comfortable to wear for long periods, because it’s more difficult to breathe. So, the best face covering depends on the circumstances.


Medical Device Developments / www.nsmedicaldevices.com


“[Surgical] facemasks have good filtration that might be good enough for low and medium-risk situations, if there is no specific exposure risk and if you additionally keep a distance,” Gunther adds. “For high-risk situations, if you are working on Covid-19 patients, FFP2 respirators are the ones that should be used,” he says. They should be limited to short periods of wear due to the low breathability, which would create greatly increased breathing exertion over time and lead to exhaustion.


Home-made masks Gunther’s research found the lowest protection against penetration from outside aerosol particles


103


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170