Mass Spectrometry & Spectroscopy
Pushing the Limits of Speed and Sensitivity in Drug Screening – an LC-MS solution
General unknown analysis of drugs in biological samples is made possible at the specialised laboratory of Dr Michael Böttcher, MVZ Labor Dessau GmbH
Author: Rohan Thakur, Executive Vice President, Bruker Daltonics
Comprehensive screening of biological samples in forensic toxicology and clinical research is not possible without powerful, highly sensitive instruments, which allow researchers to focus on the unambiguous identifi cation of parent drugs and their corresponding metabolites. Gas chromatography mass spectrometry (GC-MS) is the traditional approach to toxicological drug screening using general unknown analysis – a broad screening method which screens for over 4000 substances – but has steadily been overshadowed by the rapid turnaround time, ease of use and high sensitivity of innovative LC-MS methods.
Forensic toxicology laboratories receive wide varieties of sample type, ranging from urine and blood, to hair and oral fl uid, with some matrices posing more challenges to screening than others. Oral fl uid testing has more recently been optimised for general unknown analysis, enabling laboratories to offer such a service to health clinics, psychiatric hospitals, prisons, specialist psychiatric prisons, as well as private physicians working in addiction medicine, for example.
Toxicology Case Study - Dr Michael Böttcher’s Laboratory
Dr Michael Böttcher’s laboratory at the MVZ Laboratory based in Dessau, Germany, is renowned for its specialist capabilities in drug screening analysis and toxicological studies, and offers a complete analysis spectrum for a wide range of biological matrices.
As a comprehensive analytical facility, the laboratory receives samples from a vast range of sources: “At Lab-Dessau we do all kinds of drug testing: therapeutic drug monitoring, drugs of abuse testing, workplace drug testing, intoxication cases, clinical drugs testing, especially for addiction medicine. We work for a large number of addiction clinics in large cities like Berlin. We monitor therapeutic drugs in addition to looking for drugs of abuse,” explained Dr Böttcher, “we work for many institutions which are involved with addiction or drugs of abuse.”
Dr Böttcher’s laboratory services customers all over Europe, including in Ireland, the Netherlands, Sweden, Poland and
Austria, and are renowned for their unique routine capabilities and rapid turnaround time.
“We are very specialised in numerous rare drugs tests. We also conduct forensic testing, as we’re forensic accredited we work for a number of Forensic Institutes. A lot of customers need new psychoactive substance testing which is less routine, so they send the samples to us because of our renowned specialist capabilities,” commented Dr Böttcher. Samples are sent to the laboratory frequently for synthetic cannabinoid testing, as well as synthetic opioids and internet drugs, so called ‘legal highs’. Modern ‘designer drugs’ are sent to the laboratory, in addition to those which have been on the market for decades. Dr Böttcher’s laboratory is capable of analysing drugs from capillary blood samples, urine, hair, and oral fluid - the latter of which has been most recently optimised and is particularly unique to this laboratory, as Dr Böttcher explained:
“We are quite specialised in oral fluid testing. We receive and test approximately 300-400 oral fluid samples per day and unlike many other laboratories which use immunoassay techniques, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using this method, we routinely look for 68 substances in one run, which is done very sensitively. From the beginning this has been a highly sophisticated testing method.”
The laboratory relies on dependable instruments which operate with minimal downtime, in order to service customers with time-sensitive samples. The ability to run general unknown analysis depends on the comprehensive library of drug compounds available to the laboratory, so maintaining this as
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128