search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
588 A. ‐T. Valli et al.


&Erben, 2016; González-Orenga et al., 2021). The Limonium species of the Mediterranean area often have punctiform distributions (Brullo & Erben, 2016; Buira et al., 2017). Limonium species typically grow in littoral habitats, and


they are adapted to the environmental stress of rocky and sandy seashores and salt marshes (Erben, 1993; Caperta et al., 2014). However, a substantial number of these littoral species are threatened (van der Maarel & van der Maarel- Versluys, 1996), primarily as a result of anthropogenic impacts in coastal regions. Fourteen Limonium species endemic to Greece are already considered threatened (Phitos et al., 1995, 2009). The Greek Ionian Islands host 14 Limonium species, nine of which are endemic to this archipelago (Dimopoulos et al., 2013; Flora Ionica Working Group, 2016). Among these, three species (Limonium kora- konisicum R. Artelari & Valli, Limonium phitosianum R. Artelari and Limonium zacynthium R. Artelari) are en- demic to Zakynthos Island. The narrow ranges of the en- demic Limonium species in the Ionian Islands combined with the high vulnerability of their specialized habitats indicate the need for appropriate conservation measures. Here we combine demographic and genetic approaches


to assess conservation status and population trends, and predict the extinction risk of the three Limonium species endemic to Zakynthos Island. We aimed to (1) define the distribution of the species by exploring all potentially suit- able habitats, (2) assess their population dynamics and reproductive biology, (3) estimate genetic diversity and potential gene flow within and among subpopulations of L. phitosianum and L. zacynthium, and (4) propose conser- vation measures for the management and maintenance of the three species.


Methods


Studied species Limoniumkorakonisicum, L. phitosianumand L. zacynthium are endemic to Zakynthos Island (Plate 1). Although endem- ismin Limonium is usually associated with apomixis (Erben, 1978;Artelari, 1984a;Castro&Rosselló, 2007;Brullo&Erben, 2016),most of the Ionian endemics, including L. phitosianum and L. zacynthium, are sexually reproducing diploids (2n= 18; Artelari, 1984a,b; Artelari & Kamari, 1986). Other Limonium species are mostly polyploids and typically apo- mictic, and L. korakonisicum is the only endemic apomictic polyploid species (6×) known in this area (Valli & Artelari, 2015). The latter species forms a small population in the Korakonisi area, where it coexists with L. phitosianum (Valli &Artelari, 2015). Limonium phitosianum and L. zakynthium are included in The European Threatened Plant List (Sharrock & Jones, 2009). A record of L. phitosianum from the Stamfani islet in the Strofades Islands c. 46 km


south-south-east of Zakynthos (Brullo & Erben, 2016)is based on a single incomplete specimen (Messenien, Insel Stamfani, 14 September 1980,Piepers.n.(Herb.Greuter)), and its occurrence there is considered doubtful. All subse- quently collected Limonium specimens from Strofades Islands belong to Limonium virgatum (Willd.) Fourr., and therefore L. phitosianumis considered endemic to Zakynthos.


Geographical distribution and spatial data


To document distribution, we conducted a 5-year survey (2014–2018) encompassing all suitable habitats (i.e. calcar- eous maritime cliffs, rocky and sandy coastal areas) across Zakynthos Island. We mapped each species once per year, during flowering, using a GPS, and calculated extent of occurrence (EOO) for each species and the local extent of occurrence (local EOO) of each subpopulation using ArcGIS 10.5.1 (Esri, USA), and estimated area of occupancy (AOO) as the sum of the occupied 2 × 2 km grid cells per species (IUCN, 2022a). Estimated EOO and AOO were cross-checked using GeoCAT (Bachman et al., 2011). Local EOO was calculated following Andreou et al. (2011) as the smallest polygon or polygons encompassing all plant col- onies uninterrupted by unsuitable habitat at each subpopu- lation location. We chose this approach because a 2 × 2 km grid is too coarse for species with restricted geographical distributions, particularly littoral species, and provides a more precise measure of a species’ spatial extent within its fragmented habitats, often yielding smaller values than the traditional EOO. In 2023, we revisited the locations of all three species to ascertain whether there had been any changes in EOO or AOO since 2018.


Population size


The terminology used (mature individual, population, sub- population, population size and location) follows IUCN (2022a). To estimate population size, a count of all mature individuals was conducted during flowering and fruiting across all subpopulations of each species. For L. korakonisi- cum, we completely censused mature individuals in 5 con- secutive years (2014–2018; Table 1). For L. phitosianum,we counted mature individuals in 20 random 5 × 5 m plots in subpopulations Lp1,Lp2,Lp8,Lp9 and Lp11, and in com- plete censuses in other subpopulations over the same 5- year period, except for Lp13 and Lp14 (only in 2018). For L. zacynthium, we counted mature individuals in four ran- dom 5 × 5 m plots in subpopulation Lz1, and in complete censuses in other subpopulations for the same 5 consecutive years, except for Lz2 and Lz3 (4 years of counts). The num- ber of plants per m2 provided an approximate estimate of plant density (Andreou et al., 2015), calculated by dividing the number of mature individuals by the local EOO for each subpopulation. To assess the stage-structure


Oryx, 2024, 58(5), 587–599 © The Author(s), 2024. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605324000140


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140