Peel—Problematic Cambrian cnidarian (Octocorallia?) The basal surface of several internal molds is flattened
(Figs. 3.7–3.9, 3.11, 4.5), possibly representing a broadening of the area of attachment (Fig. 3.5), the presence of a transverse tabula within the corallum (as seen in the type species, Fig. 1.1), or a basal plug of shell material. The mold surface carries eight radiating rounded ridges, comparable to those seen in the holotype (Fig. 3.3), but secondary ridges are quickly inter- spersed between the primary eight (Fig. 4.5, 4.6). Thus, 16 grooves (four of which are arrowed in Fig. 3.7) crossed by pore- infillings on the internal mold correspond to 16 pore-traversed septa on the corallum interior. In one specimen, viewed from the base (Fig. 4.1–4.3), the
attachment surface is broken away; it is 1.2mm in diameter. A circular inner zone (Fig. 4.3), forming half the specimen diameter, is surrounded by an irregular network of infilled pores (Fig. 4.1–4.4) that represent two growth iterations (Fig. 4.2). The inner zone displays eight equidistant tubes, each of which represents a now-dissolved solid structure ~80 µmin diameter, but crossed by infrequent pores. The tubes slope radially outwards in this basal view, with steep inclination, as indicated by the impression of their inner margin on the central area, forming a similar pattern to that seen on the basal termination in Figure 4.5. Fine pores ~10 µm in diameter are concentrated in the central part of the inner zone and along the eight radiating ridges between the eight tubes (Fig. 4.3). The pore arrangement in the outer zone is labyrinthine; pores are interconnected, but they are irregular in shape, orientation and diameter, the latter varying from ~5 µmto30 µm (Fig. 4.4). There is a tendency for individual pores to swell at junctions with other pores. Budding from the corallum has not been observed, but
several specimens show rejuvenescence of the corallum (Fig. 3.2). Several internal molds lack septal grooves in their earliest growth stage (Fig. 3.6).
Etymology.—From koori (Greenlandic), basket.
Remarks.—Variation in the morphology of the preserved internal molds of Cambroctoconus koori n. sp. suggests that phosphatization was not a uniform process. While some specimens show a high degree of penetration of the porous wall of the corallum and detailed moldic reproduction (Fig. 4.1–4.4), others show more massive textures suggesting simple or even repeated molding of the calice or a lack of penetration of the pore complex (Fig. 3.5). The differences may also reflect pre- or postmortem closure of pore spaces by carbonate. With a total preserved height of 3mm, internal molds
of C. koori n. sp. are much smaller than the type species C. orientalis (height 11–13mm; Park et al., 2011), C. coreanensis (height 11–16mm; Park et al., 2016), or C. kyrgyzstanicus (height 7mm; Peel in Geyer et al., 2014). However, the extent of phosphatization within coralla of C. koori n. sp. is not well known in most specimens, and it is probable that phosphatization was restricted often just to the deepest portions of the calice. Thus, the original calcareous coralla of many specimens of C. koori n. sp. may have been higher than the preserved internal molds. Several specimens lack indications of septa on the outer wall of the corallum and this surface, as preserved, may
877
approximate to the true outer wall of the corallum (Figs. 3.10, 4.10, 4.11). Thus, phosphatization has replaced the entire specimen rather than just forming a mold of the interior. In the largest available specimen (Fig. 3.10), the turbinate earliest growth stage is octagonal in cross-section (not a common feature in C. koori n. sp.) and is succeeded, following a clear transverse fracture, by a cylindrical latest growth stage, which is interpreted as the outer surface of the corallum. The floor of the calice is preserved in several of the specimens that lack indications of septa on the outer corallum wall (Fig. 4.10, 4.11). Radiating and bifurcating ridges (Fig. 4.11, point of bifurcation arrowed) can be equated with the bifurcating septal grooves in other specimens (Fig. 3.1, arrows). However, deep septal grooves in the outer surface (Fig. 3.6) correspond to ridges on the calice interior (Fig. 3.13), clearly demonstrating that the entire specimen is an internal mold of the calice. Apart from greater size, C. orientalis and C. kyrgyzstanicus
fig.1) show budding from the calice brim and from the corallum walls, with stacks of successively formed corallites. Several daughter corallites may arise from a single parent, but connection between polyps through the walls is not seen. Budding from the corallum walls is not known in C. koori n. sp., but rejuvenation is seen (Fig. 3.2), as illustrated also by Park et al. (2011, fig.1i, 1k, 1l) in the type species. Park et al. (2011, supplementary figs. S4, S5) illustrated large numbers of closely juxtaposed specimens ofC. orientalis on a bedding plane, which were interpreted as forming a colony. It is not known if these specimens represent just a physical association of individuals, either in life or death, or formed a colony of biologically connected individuals. Park et al. (2011) referred to the associations as colonies, but their comment that the lack of shared colonial tissue (coenenchyme) was a point of difference with Anthozoa suggests just association rather than connection of individuals. Cambroctoconus coreanensis, from the Daegi Formation
differ from C. koori n. sp. in the much more strongly expressed octagonal cross-section of their coralla. An octagonal form has been observed only rarely in specimens from Greenland (Fig. 3.10) where the majority have a circular cross-section. To some extent, this may reflect a difference in calcification between the outer wall of the corallum and the calice, but thin-sections illustrated by Park et al. (2011, fig. 2) indicate that the octagonal form of C. orientalis is maintained within the calice. Apart from the difference in cross-section, both C. orientalis and C. koori n. sp. show a similar range in the overall shape of the corallum. Specimens of C. orientalis illustrated by Park et al. (2011,
(Cambrian Series 3, Drumian) of Korea (Park et al., 2016), differs from C. koori n. sp. in its slender, slightly sinuous coralla, but its internal structures are not well known.
Eight-fold symmetry of Cambroctoconus
The eight-fold symmetry in Cambroctoconus orientalis, expressed by the octagonal corallum and eight pairs of septa, is a characteristic feature of octocorals and staurozoans, but it is not confined to cnidarians. It is also characteristic of ctenophores, which were already well represented in the Cambrian (Conway Morris and Collins, 1996; Hou et al., 2004; Ou et al., 2015).
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238