Gischler et al.—New Pleistocene callianassid crustacean microcoprolite
and Evans, 1983; Neal et al., 2008; Netto et al., 2017). The observations of Moore (1932) and Shinn (1968) of modern crus- tacean fecal pellets suggest that the producer of the Pleistocene Palaxius could have been a callianassid. Crescentic canals like those in P. floridanus n. isp. were found inmodern pellets of other callianassid crustaceans, such as Axius, according to Moore (1932, pl. 1, fig. 7). Canals of fecal pellets of the modern Neotrypaea (Callianassa) californiensis exhibit ten crescentic canals in cross- section (Powell, 1974, fig. 14), although in different orientation than the Pleistocene specimens described here. The fecal pellets of the modern Callichirus (Callianassa) major have twenty-six crescentic internal canals (Pryor, 1975). As a consequence of these observations, Becker and Chamberlain (2006) have con- sidered callianassids as producers of Palaxius ichnofossils. This hypothesis is supported by the association of Palaxius with callianassid body fossils in an Eocene methane-seep deposit (Peckmann et al., 2007). Because of the ubiquity of callinassids in modern environments of the Florida platform, it seems curious that P. floridanus n. isp. has not been encountered more fre- quently. An explanation could be diagenetic micritization, a common phenomenon in shallow marine carbonates (Purdy, 1968; Reid and Macintyre, 1998) that has potentially obliterated the original canal structures leaving only texturally inconspicuous fecal pellets in this environment. Another explanation could be the fact that both the Key Largo and theMiami limestones underwent additional diagenetic alteration, especially in the meteoric environment, that has caused widespread recrystallization and neomorphism (Stanley, 1966; Robinson, 1967; Evans and Ginsburg, 1987;Multer et al., 2002).
Conclusions
The new Crustacean microcoprolite Palaxius floridanus n. isp. is described from late Pleistocene shallow-water limestones of south Florida. The producer of the ichnofossil presumably was a callia- nassid crustacean, which inhabited moderately agitated environ- ments behind the south Florida platform margin. P. floridanus n. isp. resembles P. decemlunulatus from the Oligocene. Late Jurassic and late Cretaceous forms reminiscent of P. floridanus n. isp. and previously assigned to P. decemlunulatus belong to a different ichnogenus and ichnospecies, respectively.
Acknowledgments
The senior author is grateful to R.N. Ginsburg who introduced him to the geology of south Florida, and to H.G. Multer who involved him in the project analyzing his drill cores from the south Florida area. H.A. Curran and an anonymous reviewer made thoughtful comments that improved this paper.
References
Becker, M.A., and Chamberlain, J.A., Jr., 2006, Anomuran microcoprolites from the lowermost Navesink Formation (Maastrichtian), Monmouth County, New Jersey: Ichnos, v. 13, p. 1–9.
Blau, J., and Grün, B., 2000, Liste der bekannten Gattungen und Arten. FAVRIS—interactive database on structured crustacean coprolites:
http://www.unigiessen.de/~gg13/FAVRIS/
FAVRIS.HTM.
Blau, J., Grün, B., and Senff, M., 1993, Crustaceen-Koprolithen aus der Trias der westlichen Tethys (Lienzer Dolomiten, Österreich; Pragser Dolomiten,
985
Brönnimann, P., 1972, Remarks on the classification of fossil anomuran coprolites: Paläontologische Zeitschrift, v. 46, p. 99–103.
Italien) und vom Gondwana-Westrand (oberes Magdalenatal, Kolumbien, Südamerika): Paläontologische Zeitschrift, v. 67, p. 193–214.
Brönnimann, P., and Norton, P., 1960, On the classification of fossil fecal pellets and description of new forms from Cuba, Guatemala and Libya, Eclogae Geologica Helvetiae, v. 53, p. 832–842.
Elliot, G.F., 1962, More microproblematica from the Middle East: Micro- paleontology, v. 8, p. 29–44.
Enos, P., 1974, Surface sediment facies of the Florida-Bahamas Platform: map and chart series: Geological Society of America,MC–5, Boulder, Colorado.
Evans, C.C., and Ginsburg, R.N., 1987, Fabric-selective diagenesis in the late Pleistocene Miami Limestone: Journal of Sedimentary Petrology, v. 57, p. 311–318.
Frey, R.W., Howard, J.D., and Pryor, W.A., 1978, Ophiomorpha: its morpho- logic, taxonomic, and environmental significance: Palaeogeography Palaeoclimatology Palaeoecology, v. 23, p. 199–229.
Gischler, E., 2007, Pleistocene facies of Belize barrier and atoll reefs: Facies, v. 53, p. 27–41.
Gischler, E., Ginsburg, R.N., Herrle, J.O., and Prasad, S., 2010, Mixed carbo- nates and siliciclastics in the Quaternary of southern Belize: Pleistocene turning points in reef development controlled by sea-level change: Sedimentology, v. 57, p. 1049–1068.
Halley, R.B., and Evans, C.C., 1983, The Miami Limestone.A guide to selected outcrops and their interpretation (with a discussion of diagenesis in the formation): Miami Geological Society, 67 p.
Halley, R.B., Shinn, E.A., and Hudson, J.H., 1977, Pleistocene barrier bar sea- ward of ooid shoal complex near Miami: Florida, American Association of Petroleum Geologists Bulletin, v. 61, p. 519–526.
Harrison, R.S., and Coniglio, M., 1985, Origin of the Pleistocene Key Largo Limestone, Florida Keys: Bulletin of Canadian Petroleum Geology, v. 33, p. 350–358.
Hoffmeister, J.E., and Multer, H.G., 1968, Geology and origin of the Florida Keys: Geological Society of America Bulletin, v. 79, p. 1487–1502.
Hoffmeister, J.E., Stockman, K.W., and Multer, H.G., 1967, Miami Limestone of Florida and its recent Bahamian counterpart: Geological Society of America Bulletin, v. 78, p. 175–190.
Kennedy, W.J., Jakobson, M.E., and Johnson, R.T., 1969, A Favreina- Thalassinoides association from the Great Oolite of Oxfordshire: Palae- ontology, v. 12, p. 549–554.
Kietzmann, D.A., and Palma, R.M., 2010, New crustacean microcoprolites from the Lower Cretaceous (middle Berriasian–lower Valanghinian) of the Neuquén Basin, southern Mendoza, Argentina: Journal of South American Earth Sciences, v. 30, p. 58–64.
Kietzmann, D.A., and Palma, R.M., 2014, Early Cretaceous crustacean micro- coprolites from Sierra de la Cara Cura, Neuquén Basin, Argentina: taph- onomy, environmental distribution, and stratigraphic correlation: Cretaceous Research, v. 49, p. 214–228.
Kietzmann, D.A., Blau, J., Fernandez, D.E., and Palma, R.M., 2010, Crustacean microcoprolites from the upper Jurassic–lower Cretaceous of the Neuquén Basin: Argentina, systematics and biostratigraphic implications: Acta Paleontologica Polonica, v. 55, p. 277–284.
Kuss, J., and Senowbari-Daryan, B., 1992, Anomuran coprolites from Creta- ceous shallow water limestones of NE Africa: Cretaceous Research, v. 13, p. 147–156.
Lidz, B.H., Hine, A.C., Shinn, E.A., and Kindinger, J.L., 1991, Multiple outer reef tracts along the south Florida bank margin: outlier reefs, a new windward reef model: Geology, v. 19, p. 115–118.
Moore, H.B., 1932, The faecal pellets of the Anomura: Proceedings of the Royal Society of Edinburgh, v. 52, p. 296–308.
Multer, H.G., Gischler, E., Lundberg, J., Simmons, K., and Shinn, E.A., 2002, The Key Largo Limestone revisited: Pleistocene shelf edge facies: Florida Keys, USA, Facies, v. 46, p. 229–272.
Muhs, D.R., Simmons, K.R., Schumann, R.R., and Halley, R.B., 2011, Sea-level history of the past two interglacial periods: new evidence from U-series dating of reef corals from south Florida: Quaternary Science Reviews, v. 30, p. 570–590.
Neal, A., Grasmueck, M., McNeill, D.F., Viggiano, D.A., and Eberli, G.P., 2008, Full-resolution 3D radar stratigraphy of complex oolitic sedimentary architecture: Miami Limestone, Florida, U.S.A: Journal of Sedimentary Research, v. 78, p. 638–653.
Netto, R.G., Curran, H.A., Belaústegui, Z., and Tognoli, F.M.W., 2017, Solving a cold case: new occurrences reinforce juvenile callianassids as the Ophiomorpha puerilis tracemakers: Palaeogeography Palaeoclimatology Palaeoecology, v. 475, p. 93–105.
Palik, P., 1965, Remains of crustacean excrement from the lower Cretaceous of Hungary: Micropaleontology, v. 11, p. 98–104.
Paréjas, E., 1948, Sur quelques coprolithes de crustacés: Archives des Sciences, v. 1, p. 512–520.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238