search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
992


Journal of Paleontology 91(5):987–993


Formation, the very strong morphological similarities between trace and inferred tracemaker are striking. We thus reinterpret these impressions as having been produced by the long lateral T1 processes of A. pagoda n. gen. n. sp., while the long, posterior longitudinal groove would have been produced by the legless postabdomen and telson of A. pagoda n. gen. n. sp. (compare Figs. 1, 3 with the reconstruction of A. pagoda n. gen. n. sp. in Fig. 1). Additionally, the Protichnites and Diplichnites trackways on the surface figured in Briggs et al. (2010, fig. 3a) may have been produced by Antarcticarcinus n. gen. walking on the sediment surface because these ichnogenera have been associated with eutycarcinoids (MacNaughton et al., 2002; Collette et al., 2012). All euthycarcinoid taxa except for the Middle Triassic


Synaustrus brookvalensis occur from approximately 30°N to 30°S. Both S. brookvalensis and A. pagoda n. gen. n. sp. occur at approximately 85°S, but S. brookvalensis occurred during greenhouse Middle Triassic time, while A. pagoda n. gen. n. sp. inhabited an ice-dominated lake. As inhabitants of a polar lake supplied by seasonally introduced glacial meltwater, A. pagoda n. gen. n. sp. must have been capable of withstanding extremely cold temperatures. Abundant evidence shows that continental glaciation in southern Gondwana was extensive during the latest Paleozoic (Crowell, 1978, 1999, p. 28–39; Coates, 1986; Collinson and Elliot, 1986; Miller, 1989). Based on the inferred temperature tolerances of coexisting conchostracans (Tasch, 1964), water temperatures in the Pagoda lake may have reached approximately 10°C for several weeks each year. Trace fossils, whose margins are commonly indistinct, were probably constructed in soft, unfrozen muds (Miller and Smail, 1996). Wood fragments present in the Pagoda Formation at Mt. Butters imply the proximity of terrestrial vegetation requiring an environment that received enough sunlight and warmth seasonally to promote growth (Isbell et al., 2001). The occur- rence of euthycarcinoids in low-diversity freshwater settings dominated by conchostracans is not unique to the Pagoda lake— Euthycarcinus martensi from Germany also co-occurs with conchostracans and few other animals (Schneider, 1983). Euthycarcinoids from the upper Carboniferous Mazon Creek (Schram and Rolfe, 1982) and Montceau-les-Mines (Rolfe et al., 1982; Schram and Rolfe, 1982; Schram and Rolfe, 1994) deposits co-occur with conchostracans, ostracodes, and numer- ous other taxa. Taken together, paleobiological and sedimento- logical evidence suggest periodic warming in high southern latitudes during the Permian (Isbell et al., 2001). The extreme rarity of non-mineralized arthropod body


fossils such as A. pagoda n. gen. n. sp. in these lacustrine deposits imply that: (1) difficult ecological conditions may have been limiting to many taxa, or (2) scavenging and/or microbial degradation proceeded rapidly due to limited resources. Remains of predaceous or scavenging animals are unknown from the Pagoda Formation, but trace-fossil evidence from the Mackellar Formation suggests that A. pagoda n. gen. n. sp. may not have been a rare animal because many cf. Orbiculichnus traces attributable to this taxon occur on a single small slab from Mt. Weeks (Briggs et al., 2010). The occurrence of Antarcticarcinus pagoda n. gen. n. sp. in


a polar lacustrine setting indicates that euthycarcinoids may have been more successful and geographically widespread than


previously thought. All known euthycarcinoids occur in shallow, emergent, nearshore, or lacustrine environments (Racheboeuf et al., 2008), and with the exceptions of A. pagoda n. gen. n. sp. and Arthrogyrinus platyurus (Wilson and Almond, 2001) from the Carboniferous of the UK, most do not have adaptations specific to an aquatic lifestyle. Together with their dispersed paleobiogeographic distribution, and very limited number of occurrences, this begs the question of whether euthycarcinoids were truly aquatic organisms, or whether perhaps they may have been amphibious. A pair of ventral exoskeletal sternal pores per preabdominal sternite is closely associated with internal tube-like structures in many euthy- carcinoid taxa (Schram, 1971; Edgecombe and Morgan, 1999; Anderson and Trewin, 2003, p. 482, text-fig. 12; Vaccari et al., 2004). Such an arrangement of external openings and internal tubes is strikingly similar to the respiratory system in millipedes where a pair of respiratory spiracles per segment opens intern- ally to a branched tracheal tree for distribution of gasses to tissues (Clarke, 1973, p. 101). Others have posited that the sternal pores could be coxal vesicles associated with eversible sacs of the type present in myriapods (Edgecombe and Morgan, 1999), where these structures are associated with moisture uptake (Clarke, 1973, p. 56). Either of these interpretations for euthycarcinoid sternal pores argues for an amphibious or subaerial lifestyle. Considering these interpretations, together with abundant trace-fossil evidence indicating subaerial euthy- carcinoid activity (McNamara and Trewin, 1993; MacNaughton et al., 2002; Vaccari et al., 2004; Collette and Hagadorn, 2010; Collette et al., 2012), the absence of euthycarcinoid remains in offshore deposits, it is possible that euthycarcinoids had devel- oped the ability to breathe air by Cambrian time, and that they adopted an amphibious lifestyle thereafter.


Acknowledgments


J.Collette thanks L.Babcock for sending thematerial described in this paper for study andD. Briggs for providing the photograph of cf. Orbiculichnus. An earlier version of this manuscript was improved by the helpful suggestions from the following review- ers: G. Edgecombe, J. Hannibal, and J. Vannier. This work was supported by NSF grants OPP-9419962 and OPP-9615045 to J.I., and grants OPP-9417978 and OPP-9614709 toM.M.


References


Anderson, L.A., and Trewin, N.H., 2003, An Early Devonian arthropod fauna from the Windyfield Cherts, Aberdeenshire, Scotland: Palaeontology, v. 46, p. 467–509.


Askin, R.A., 1998, Floral trends in the Gondwana high latitudes: palynological evidence from the Transantarctic Mountains: Journal of African Earth Science, v. 27, p. 12–13.


Babcock, L.E., Miller, M.F., Isbell, J.L., Collinson, J.W., and Hasiotis, S.T., 1998, Paleozoic–Mesozoic crayfish from Antarctica: earliest evidence of freshwater decapod crustaceans: Geology, v. 26, p. 539–542.


Babcock, L.E., Isbell, J.L., Miller, M.F., and Hasiotis, S.T., 2002, New late Paleozoic conchostracan (Crustacea: Branchiopoda) from the Shackleton Glacier area, Antarctica: age and paleoenvironmental implications: Journal of Paleontology, v. 76, p. 70–75.


Briggs, D.E.G., Miller, M.F., Isbell, J.L., and Sidor, C.A., 2010, Permo–Triassic arthropod trace fossils from the Beardmore Glacier area, central Transan- tarctic Mountains, Antarctica: Antarctic Science, v. 22, p. 185–192.


Clarke, K.U., 1973, The Biology of the Arthropoda: New York, American Elsevier Publishing Company, 270 p.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238