search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Famoso—Dental variation in Oligocene equids


tooth positions in equids (Famoso and Davis, 2014). As such, this study assumes that hypostyle morphology is serially homologous between tooth positions at the same state of wear. Hypostyle condition type 1 should be less developed than type 2. Likewise, type 2 appears less developed than type 3, and type 3 appears less developed than the final stage designated as none. If hypostyle condition is related to wear stage, then the hypo- style condition should be ordered and each ordered pair should be significant. However, if hypostyle condition is not related to tooth wear, then there would be no significant relationship between the ordered hypostyle condition pairs. R code is provided in Supplementary Data Set 2.


Repositories and Institutional Abbreviations.—AMNH FM: American Museum of Natural History, Division of Paleonto- logy, New York, NY, USA; JODA: John Day Fossil Beds National Monument, United States National Park Service, Kimberly, OR, USA;UCMP: University of California Museum of Paleontology, Berkeley, CA, USA; UOMNH F-: University of Oregon Museum of Natural and Cultural History, Condon Fossil Collection, Eugene, OR, USA; UWBM: Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA; YPM VP: Yale Peabody Museum of Natural History, Division of Vertebrate Paleontology, New Haven, CT, USA.


Results


None of the datasets violated the assumption of Gaussian dis- tribution. The V values and t statistics for the APL andTWof the M1 of the John Day Miohippus, M. equinanus, Mesohippus bairdii, Equus quagga, and Tapirus terrestris are presented in Table 2. Interestingly, when all of the John Day equid material was lumped, the t test was significant, suggesting more than one species was present. However, when specimens that were identified as Mesohippus, those from the Kimberly Member, and one specimen with uncertain locality and lithologic infor- mation were excluded, the t test was not significant, suggesting only one species is present among those remaining specimens. The remaining specimens are only from the Turtle Cove Member. Each group, as defined earlier, was removed one at a time. Interestingly, when M. bardii was compared to the two modern taxa, E. quagga and T. terrestris, it was significantly different in both the APL and TW, suggesting that more than one species is present (Supplementary Data Set 1). The V values and t statistics for the APL andTWof the m1 of the Turtle Cove Miohippus and T. terrestris are also presented in Table 2. The calculations of V and the t statistic are provided in Supplemen- tary Data Set 1. Only the calculated t statistics for the m1 TW between the Turtle Cove Miohippus and T. terrestris was significant. There is no significant difference between the V in the Turtle Cove Miohippus and M. bairdii, M. equinanus, E. quagga, and T. terrestris, with the exception of theTWof the m1, as noted above (Table 2). The ordered logistic regression was significant for all


hypostyle condition pairs (Table 3). The ordered logistic regression was also significant when the M3 was removed. Each hypostyle condition was significantly different from the next


1065


Table 2. Summary statistics for t test.V=Coefficient of Variation, V'=Coefficient of Variation (small sample size correction), n = sample size, SD = standard deviation, APL=anterior-posterior length, TW = transverse width, N/A=Not available. Mean values are in mm.


V Turtle Cove Miohippus V Mesohippus bairdii V' Miohippus equinanus V Tapirus terrestris Mean Equus quagga


V Equus quagga


M1 APL M1 TW m1 APL m1 TW 5.827 4.805 N/A N/A


Mean Turtle Cove Miohippus Mean Mesohippus bairdii Mean Miohippus equinanus Mean Tapirus terrestris SD Equus quagga


n Turtle Cove Miohippus n Mesohippus bairdii n Miohippus equinanus n Tapirus terrestris


SD Turtle Cove Miohippus SD Mesohippus bairdii SD Miohippus equinanus SD Tapirus terrestris n Equus quagga


p value: Turtle Cove Miohippus vs. Tapirus terrestris


p value: Turtle Cove Miohippus vs. Miohippus equinanus


p value: Turtle Cove Miohippus vs. Mesohippus bairdii


p value: Turtle Cove Miohippus vs. Equus quagga


6.425 4.326 6.156 12.305 9.821 8.262 N/A N/A 5.856 4.012 N/A N/A 5.520 3.891 6.553 3.931 22.140 23.310 N/A N/A 14.183 16.598 13.280 9.681 11.200 14.040 N/A N/A 11.100 13.500 N/A N/A N/A N/A N/A N/A 1.290 1.120 N/A N/A 0.911 0.718 0.818 1.191 1.100 1.160 N/A N/A 0.600 0.500 N/A N/A N/A N/A N/A N/A 42 11 27 3


42 N/A N/A 8


5


0.345 0.636 N/A N/A 0.921 0.955 N/A N/A 0.436 0.448 N/A N/A 0.276 0.359 0.563 <0.001


29 28


N/A N/A 29


29 5


24 N/A N/A 3


Table 3. Summary statistics for ordered logistic regression. Wear = Wear stage as approximated by Hypsodonty Index and represents the overall rela- tionship between wear stage and hypostyle condidtion, 1 | 2 = ordered test of hypostyle condition 1 and 2, 2 | 3 = ordered test of hypostyle condition 2 and 3, 3 | none = ordered test of hypostyle condition 3 and none, * = dependent variable. Hypostyle condition and wear stage appear as independent variables because the logistic regression tests both for a relationship with wear stage and for differences among ordered pairs.


Value 3 | none *


Wear 1 |2* 2 |3*


−16.197 −9.717 −7.192 −4.436


Std. Error 2.903


1.407 1.192 1.004


−6.907 −6.031 −4.417


t-value −5.580


<0.0001 <0.0001 <0.0001


advanced stage, indicating that hypostyle condition is dependent on wear stage.


Discussion


The V values found in the sample of the of Turtle Cove Miohippus population are not significantly different from the V of any other sample of comparative taxa investigated in this study. Because the samples of comparative taxa used in this study are considered to be from populations containing a single species, my results suggest that the length and width of teeth observed in the Turtle Cove sample is what would be expected from a single horse population, or species concept. However, M. bardii may represent multiple species, given that its t tests with modern analogs were significant. Species level diagnoses for Miohippus and Mesohippus use the APL as an important character (Prothero and Shubin, 1989), and it is clear from my results that more than one species of Turtle Cove Miohippus cannot be distinguished based upon the APL or TW.


p-value <0.0001


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238