This page contains a Flash digital edition of a book.
manufacturing technology A New Approach In its quest for a better way to machine today’s turbine


blades Walter looked at traditional tooling issues such as cut- ting tool materials and geometries, but also went beyond that


the greatest potential for cooling. The savings anticipated in the production of stainless steel turbine blades were as high as 40%. Building on this pioneering basic research, and in close cooperation with Starrag AG (Rorschacher- berg, Switzerland), Walter became the fi rst tooling specialist worldwide to implement the principle of cryogenic cooling in an application-based, ready-for-industry solution. This was successfully presented for the fi rst time in March 2013 under the name of “Cryo·tec.” At EMO 2013, Walter and Starrag received the MM Award for the most innovative exhibit in the milling category for their solution.


A Special Milling Cutter For the tool, the two partners chose a version of the Walter


F2334R round insert copy mill that was optimized specifi cally for blade machining. A main feature of this type of cutter is its high level of stability and therefore process reliability, and the fact that it is capable of fi ve-axis machining. It covers 70–80% of the entire machining process, covering the majority of metal removal in the turbine blade area. The use of fi ve-axis machin- ing allows optimum geometric and cutting force ratios to be set in all positions and permits a close approximation of the fi nal contour to be achieved even during roughing. The F2334R is equipped with two channels, which can be used to supply two different coolant types at the same time: one channel for CO2


and a second channel for MQL, compressed air or emulsion. The CO2 is fed through the tool


in liquid form at room temperature under 870 psi (6 MPa) pressure and is released in the direct vicinity of the cutting edge. The CO2


the desired cooling effect is achieved.


Chart indicates potential savings with Cryo•tec for roughing of turbine blades made of austenitic stainless steel over dry machining.


to study the cooling process as well. The high temperatures that occur during turbine machining stress the carbide sub- strate and limit performance. Unlike steel, the heat produced when machining diffi cult-to-cut materials is not primarily dis- sipated via swarf. Instead, it penetrates into the cutting edge, thereby softening the cobalt and tungsten carbide alloy. At the start of 2013, Walter got together with the Institute


for Production Technology (IfP) at Germany’s West Saxon University of Applied Sciences Zwickau to perform basic research on cryogenic machining with liquid CO2


. During


these experiments the cutting edges were cooled to –78.5°C. The experiments in Zwickau were performed with an external coolant supply. Various cooling strategies, MQL (minimum quantity lubricant), emulsion, CO2


were compared with one another. The results showed a clear winner: the CO2


approach has


“An important developmental step with Cryo·tec is the use of a two-channel system for feeding coolant through the tool instead of an external supply,” said Thomas Schaarschmidt, who is responsible for turbine blade machining technology at Walter. “With fi ve-axis machining, externally fed CO2


then expands at this point to form dry ice, and


never re-


ally gets to where it is needed, that is, as close as possible to the cutting zone, where the high temperatures actually occur. When working with titanium, lubrication is also required in ad- dition to pure cooling. The approach here is to separate MQL and CO2


using a two-channel tool. Starrag AG developed the , and combinations of these


spindle for this, while Walter provided the optimum tools.” Schaarschmidt said the advantages of the cryogenic cooling concept can be summarized as follows: Longer tool life thanks to lower tool wear rate, greater productivity thanks to improved cutting parameters, higher component qual- ity thanks to better surface fi nish and reduced border zone infl uence. Costs associated with maintenance and disposal


76 — Energy Manufacturing 2015


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224