This page contains a Flash digital edition of a book.
sequenziale tra di essi. Come menzionato, una curva NURBS di grado 1 si comporta a tutti gli effetti come una polilinea. dal momento che una polilinea è una collezione di segmenti di retta che uniscono due o più punti, la curva risultante passerà sempre attraverso i suoi punti di controllo, rendendola simile in qualche modo alla curva interpolata. Come i tipi di curve visti finora, l'input V di Polyline specifica un set di punti che pag77(71)


costituiscono gli estremi dei segmenti componenti la polilinea. L'input C di Polyline stabilisce se essa è aperta o chiusa. Nel caso il valore booleano sia True, quando la coordinata del primo punto non coincide con quella dell'ultimo, verrà automaticamente creato un ultimo segmento che unisce questi due punti. L'output di Polyline è leggermente diverso da quello degli esempi precedenti, perché l'unico risultato è la polilinea stessa. Devi usare uno degli altri componenti di analisi delle curve di GH per ricavare altri attributi di Polyline.


E)Poli-Arco (Curve/Spline/Poly Arc)


Una Poly Arc è praticamente identica per natura alla Polyline, eccetto che, invece di segmenti di retta, usa una serie di archi che connettono i punti. Poly Arc è univoca, nel senso che calcola la tangenza richiesta in ciascun punto per ottenere una curva fluida, dove il passaggio tra un arco e quello successivo è privo di variazioni brusche. Non ci sono altri input, oltre alla serie di punti iniziale, e l'unico output è la curva risultante.


71


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164