This page contains a Flash digital edition of a book.
« LYOPHILIZATION


Chemical Engineering from University of Southern California and Ph.D. in Pharmaceutical Sciences from the University of Connecticut. His publications have focused on freeze drying process design and control. Dr. Patel’s research interests remain in this area and include application of QbD to the development and manufacturing of freeze-dried drug product.


Dr. Brian Lobo is a Senior Scientist in the department of Formulation Sciences at MedImmune. Dr. Lobo is responsible for formulation and drug product development of monoclonal antibodies and novel proteins as liquid and freeze-dried products. He has


previously worked in formulation development at Amylin, Genentech and Merck. He received his B.S. in Pharmacy from Rutgers University and his Ph.D. in Pharmaceutical Chemistry from the University of Kansas. Dr. Lobo’s research interests include biophysical characterization and stabilization of proteins and peptides in liquid, frozen and freeze-dried formulations.


Dr. Ambarish Shah is a R&D Director in the Formulation Sciences Department at MedImmune. With over 15 years of leadership experience in small molecule and biopharmaceutical development at Wyeth, Human Genome Sciences, and MedImmune,


he has supervised teams of up to 15 scientists from early development through post-commercial support and has led global teams and projects.


He has led several high profile CMC investigations on


commercial products leading to successful outcomes. He is a cross- project CMC Project team leader and a functional leader with expertise in biophysics, analytical technologies, lyophilization and drug delivery technologies.


At MedImmune he is leading or actively supporting


several technology initiatives, the Asia expansion initiatives, due diligences, alliance projects, and is a sitting member of several active committees and steering teams.


References 1.


2.


3. 4.


5. 6. 7. 8. 9. 10. 11. 12. 13. 14.


Giordano A, Barresi AA, Fissore D. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process. J Pharm Sci. 2011;100:311- 324.


Fissore D, Pisano R, Barresi AA. Advanced approach to build the design space for the primary drying of a pharmaceutical freeze-drying process. J Pharm Sci. 2011;100:4922-4933.


Rasetto V, Marchisio DL, Fissore D, Barresi AA. On the use of a dual-scale model to improve understanding of a pharmaceutical freeze-drying process. J Pharm Sci. 2010;99:4337-4350.


Colandene JD, Maldonado LM, Creagh AT, Vrettos JS, Goad KG, Spitznagel TM. 2007. Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent. J Pharm Sci 96(6):1598-608.


Patel SM, Pansare S. 2012. Effect of Drying a High Concentration Mab at, above and below Tg’. PepTalk, San Deigo, CA.


15. Mujat M, Greco K, Galbally-Kinney KL, Hammer DX, Ferguson RD, Iftimia N, Mulhall P, Sharma P, Pikal MJ, Kessler WJ. 2012. Optical coherence tomography-based freeze-drying microscopy. Biomed Opt Express 3(1):55-63.


16. 17. 18. 19.


Rambhatla S, Ramot R, Bhugra C, Pikal MJ. Heat and mass transfer scale-up issues during freeze drying: II. Control and characterization of the degree of supercooling. AAPS PharmSciTech. 2004;5:e58.


Li X, Nail SL. Kinetics of glycine crystallization during freezing of sucrose/glycine excipient systems. J Pharm Sci. 2005;94:625-631.


Searles JA, Carpenter JF, Randolph TW. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci. 2001;90:860-871.


Searles JA, Carpenter JF, Randolph TW. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T(g)’ in pharmaceutical lyophilization. J Pharm Sci. 2001;90:872-887.


20. Heller MC, Carpenter JF, Randolph TW. Manipulation of lyophilization-induced phase separation: implications for pharmaceutical proteins. Biotechnol Prog. 1997;13:590-596.


21. 22. 23. 24.


Carpenter JF, Chang BS, Garzon-Rodriguez W, Randolph TW. Rational design of stable lyophilized protein formulations: theory and practice. Pharm Biotechnol. 2002;13:109-133.


Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14:969-975.


Pikal MJ. Freeze-drying of proteins: Part II: Formulation selection. Biopharm. 1990;3:26-30.


Tang XC, Nail SL, Pikal MJ. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer. Pharm Res. 2005;22:685-700.


Schneid SC, Gieseler H, Kessler WJ, Pikal MJ. Non-invasive product temperature determination during primary drying using tunable diode laser absorption spectroscopy. J Pharm Sci. 2009;98:3406-3418.


Schneid SC, Gieseler H, Kessler WJ, Luthra SA, Pikal MJ. Optimization of the secondary drying step in freeze drying using TDLAS technology. AAPS PharmSciTech. 2011;12:379-387.


Patel SM, Pikal M. Process analytical technologies (PAT) in freeze-drying of parenteral products. Pharm Dev Technol. 2009;14:567-587.


Pikal MJ, Cardon S, Bhugra C, Jameel F, Rambhatla S, Mascarenhas WJ, et al. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications. Pharm Dev Technol. 2005;10:17-32.


Kuu WY, Nail SL. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS). J Pharm Sci. 2009;98:3469-3482.


25. 26.


27. 28.


Lueckel B, Helk B, Bodmer D, Leuenberger H. Effects of formulation and process variables on the aggregation of freeze-dried interleukin-6 (IL-6) after lyophilization and on storage. Pharm Dev Technol. 1998;3:337-346.


Konstantinidis AK, Kuu W, Otten L, Nail SL, Sever RR. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate. J Pharm Sci. 2011;100:3453-3470.


Shon M. ControlLyoTM Nucleation On-Demand Technology Manufacturing Scale Implementation Case Study. PepTalk 2013;Palm Springs, CA.


Geidobler R, Winter G. Controlled ice nucleation in the field of freeze-drying: Fundamentals and technology review. Eur J Pharm Biopharm. 2013.


Ling M. Beyond Controlled Nucleation. PepTalk 2013, Palm Springs, CA.


Brower J. Ice Fog incduced nucleation, CPPR Conference on Freeze-Drying of Pharamceuticals and Biologicals. . 2012.


Rambhatla S, Pikal MJ. Heat and mass transfer scale-up issues during freeze-drying, I: atypical radiation and the edge vial effect. AAPS PharmSciTech. 2003;4:E14.


Patel SM, Doen T, Pikal MJ. Determination of end point of primary drying in freeze-drying process control. AAPS PharmSciTech. 2010;11:73-84.


29. Nail SL, Johnson W. Methodology for in-process determination of residual water in freeze-dried products. Dev Biol Stand. 1992;74:137-50; dicussion 150-1.


30. 31.


32. 33.


Patel SM, Jameel F, Pikal MJ. The effect of dryer load on freeze drying process design. J Pharm Sci. 2010;99:4363-4379.


Rambhatla S, Tchessalov S, Pikal MJ. Heat and mass transfer scale-up issues during freeze- drying, III: control and characterization of dryer differences via operational qualification tests. AAPS PharmSciTech. 2006;7:E39.


Patel SM, Pikal MJ. Lyophilization Process Design Space. J Pharm Sci. 2013.


Liu J. Physical characterization of pharmaceutical formulations in frozen and freeze-dried solid states: techniques and applications in freeze-drying development. Pharm Dev Technol. 2006;11:3-28.


www.americanpharmaceuticalreview.com | | 83


»


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156