This page contains a Flash digital edition of a book.
« XRD


50°C/95%RH for two weeks showed a line width approaching 0.08 °2θ, which is not as narrow as the non-micronized line width, 0.07 °2θ, but demonstrates significant annealing and possible increase in crystallite size in a relatively short time period. The broadening of the calculated XRPD line width was consistent with the generation of nanocrystalline content during micronization and the phase annealed with an apparent synergy of temperature and relative humidity.


Further


work is required to determine if strain is also contributing to the peak broadening and to the changes observed in the annealed samples. Additional work is ongoing to correlate these findings to changes observed between freshly micronized and aged APIs that have been stored under typical warehouse conditions.


The thermal and vapor sorption properties of the micronized samples exposed to different environmental conditions were also tested at various time points. The crystallization events attributable to high mobility surface amorphous phase and the line width sharpening due to annealing of the nanocrystalline phase occurred on different time scales. The crystallization of the amorphous content occurred at a significantly faster rate compared to the annealing of the nanocrystalline content, indicating that different components of disorder are generated during micronization. Correlations between changes in the surface area and porosity of the micronized samples and the XRPD line width analysis are being investigated to further characterize the nanocrystalline content in these systems.


NETZSCH DELTAVITA® - Enhance API Solubility and Improve Performance! Conclusions


The crystallization onset temperature of amorphous APIs is influenced by surface area and SSNMR was used to demonstrate a correlation between molecular mobility and surface available for crystallization. Based on the physical characteristics of micronized APIs, it appears that there are different components of disorder that are generated as a result of the mechanical stress incurred during processing. DSC, GVS, and SSNMR results are consistent with the formation of surface amorphous regions with enhanced molecular mobility.


XRPD line


width analyses suggest the formation of structural changes consistent with nanocrystalline content. The annealing of the nanocrystalline phase of micronized systems can be monitored using XRPD line broadening analysis. Work is ongoing to develop a comprehensive understanding of the individual components of disorder on the physicochemical properties and stability of micronized APIs.


Author Biographies


Rachel G. Forcino, Ph.D., is an investigator within Product Development at GlaxoSmithKline. Her interests include solid state analysis and process development of pharmaceutical materials. Specific focus has included the


Pharmaceutical manufacturing down to the Nanometer particle size range


cGMP-compliant equipment exceeds your most stringent pharmaceutical grinding and dispersion requirements


Specifi cally designed for pharmaceutical processing in batch sizes from 15 ml to 4000 liters


Pilot scale and production mills are CIP / SIP capable


Comprehensive testing and qualifi cation documentation, FAT, IQ, OQ, process validation


www.netzsch-grinding.com/pharma


www.americanpharmaceuticalreview.com |


| 45


»


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156