This page contains a Flash digital edition of a book.
« NIR


studies on cleaning verification of manufacturing equipment have also reported similar drying patterns for API soils [12] and dairy residues [4].


Linear Models Based on NIR Hyperspectral Datacubes for the Quantification of API Residue on Stainless Steel


Following the masking classification function, the resultant numbers of API classified pixels per applied soil concentration were fitted with a linear regression model. The obtained linear models for sulfadimidine sodium salt and sulfacetamide sodium salt are displayed in Figure 3. For sulfadimidine sodium salt and sulfacetamide sodium salt soils on stainless steel coupons the R2


values obtained were


0.96 and 0.99 respectively, which indicate a linear relationship between numbers of API classified pixels and applied API soil concentration. In Figure 3, it can also be observed that the number of API classified pixels varied noticeably between replicate soils of the same concentration, especially in the case of sulfadimidine sodium salt. The detected variability in replicate precision may be attributed to the drying of API water-based soils on stainless steel surfaces, as previously discussed which results in a non-homogenous soil with a ring-like appearance.


The limits of detection (LOD) for sulfadimidine sodium salt and sulfacetamide sodium salt soils on stainless steel coupons calculated according to the International Conference on Harmonisation (ICH) [11] were 27.10 and 13.68 µg / 50 mm2


respectively.


However, visual examination of the images presented in Figure 2 indicate that there is potential to lower the limit of detection


. The calculated limits of detection reflect the residual standard error (RSE) of the linear model fitted to the experimental data (number of API classified pixels versus applied soil concentration). The RSE is in turn affected by the variability in the number of pixels classified as API between replicate API residues at the same concentration level. The use of different protocols to simulate the soiling process in industrial manufacturing equipment may result in improved soil uniformity and improved replicate precision, contributing to lowering of the LOD in cleaning verification by NIR-CI.


of API residues to values circa 1 µg 50 mm- 2


In addition, further analysis of the NIR hyperspectral datacubes may be conducted


www.americanpharmaceuticalreview.com | | 107


An introduction on the use of FT-NIR for raw material and finished product identification in the Nutraceutical industry will be presented. A widely used technique in the pharmaceutical industry for ingredient identification, FT-NIR is a fast and nondestructive technique that provides chemical and physical properties on virtually any matrix.


Presenters:


Gayle Kittelson Quality Manager, Embria Health Sciences


Mark Terrell FT-NIR Product Manager, BUCHI Corporation


Raw Material Analysis by Fourier Transform Near Infrared (FT-NIR) Spectroscopy


to develop robust and accurate models with possibly lower limits of detection for the quantification of API residues. In the present feasibility study, the quantification of API soils was based on regression models developed using solely the number of API pixels identified by the classification function. More elaborated classification functions may be developed and tested, as well as algorithms to extract information related to soil thickness that may result in an improved quantification of API soils in cleaning verification using NIR-CI.


Join American Pharmaceutical Review and BUCHI Corporation for this on-demand webinar


REGISTER and VIEW ON-DEMAND http://goo.gl/Yc3p9B


»


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156