This page contains a Flash digital edition of a book.
N1 Engineering Science|The Easy Way! 83


1.4 Write down an equation to represent what takes place.


2. A copper ball with amass of 3 kg and a temperature of 300 °C is dropped into water which has a temperature of 14 °C. The final temperature of the water and steel settles at 29 °C. The specific heat capacity of the copper is 390 J/kg °C and that of water 4,2 kJ/kg °C. Neglect losses and determine the amount of water that was used.


3. A steel casting is at a temperature of 450 °C. It is dumped into 20 ℓ of water at 22 °C to cool. The final temperature of the steel and water settles at 35 °C. Assume that no heat is lost and that the water has a specific heat capacity of 4,19 kJ/kg °C and the steel 490 J/kg °C. Determine; 3.1 the rise in temperature of the water, 3.2 the drop in temperature of the steel casting, and 3.3 themass of the steel casting.


Exercise 4.5 1. What happens to the volume ofmost substances when heated?


2. Describe an experiment to prove volumetric expansion. 3. Name one practical example where volumetric expansion is put to use.


4. On what principle does a bimetal strip operate? 5. What ismeant by linear expansion?


6. Describe, with the aid of neat labelled sketches, an experiment with a bimetal strip to illustrate linear expansion.


7. Give two examples where bimetal strips are used in practice.


8. Give two useful applications of linear expansion. 9. Give three examples where you have seen results of or steps to prevent the detrimental effects of thermal expansion.


10. Write down an equation to determine the change in length of a body which undergoes a change in temperature.


11. An overhead conductor has a length of 135mwhen it spans between two pylons at a temperature of 12 °C during the night. During the day the temperature of the conductor rises to 32 °C. If the temperature coefficient of the conductor is 0,017 × 10–3/°C, calculate the increase in length of the conductor.


12. During an experiment to prove linear expansion with ametal rod, the following results were obtained: initial length of the rod = 45 cm; increase in length = 1,5 mm; initial temperature = 20 °C; final temperature = 280 °C. Determine; 12.1 the final length of the rod, and


(5,033 kg or 5,033 l)


(13 °C; 415 °C; 5,357 kg)


(45,9 mm)


(451,5 mm)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140