This page contains a Flash digital edition of a book.
14 Chapter 1 • Dynamics


Refer to equation 1.1 {g = 9,8 m/s2} and the following example of a free-falling body. Example 1.12


Consider a body from the moment it is released: Aſter 1 second, Aſter 2 seconds, Aſter 3 seconds, Aſter 4 seconds,


v1 = 9,8 m/s


v2 = 9,8 + 9,8 = 19,6 m/s v3 = 19,6 + 9,8 = 29,4 m/s


v4 = 29,4 + 9,8 = 39,2 m/s and so on.


Te velocity/time graph for a body with uniform acceleration (such as a free-falling body) is a straight line. For a body initially at rest, t = 0 and v = 0. After t = 1 s, g = 9,8 m/s2. Tis can be plotted on a graph (fig. 1.6) with scales of 2 cm = 1 s and 2 cm = 10 m/s, as follows: y


40 39,2 (d) 30 20 10 3y 19,6 (c) 9,8 (a) 0 1 Fig. 1.6 Velocity/time graph


acceleration of the body: g = 3


3 g. 1.6 Velocity/time graph Te slope (gradient) of a straight line graph is 3 3


y x . In this case it would represent the


v t m/s2 ................................................................................................................ (1.6)


This verifies the definition of acceleration. Refer to definition 1.10, Acceleration.


Example 1.12 can also be illustrated by this graph. Fromthe graph: After 2 seconds (Oa), v = 19,6 m/s (Oc) After 4 seconds (Ob), v = 39,2 m/s (Od)


Time (t) in s 2 3 (b) 4 x


1444442444443 3x


Velocity (v) in m/s


1444442444443


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140