This page contains a Flash digital edition of a book.
N1 Engineering Science|The Easy Way! 3


Given unit Conversion


1 μΩm × 1 1 mm × 1 1 cm × 1


Unit to be used in calculations


1000 000 or ÷ 1 000 000 0,000 001Ωm 1000 or ÷ 1 000 100 or ÷ 100


or 10–6 Ωm


0,001m or 10–3 m


0,01m or 10–2 m


1 kN × 1 000


1 MJ × 1 000 000 1 mm2 × 1 1 cm2 × 1


Table 1.2 Conversions


1.2 Scalars and vectors 1.2.1 Scalar


D


Quantities such as mass, speed, distance, temperature and time, possess magnitude only and are therefore scalar quantities.


Definition 1.1 Scalar A scalar is a quantity which has only magnitude.


1.2.2 Vector D


A quantity that has magnitude and direction is referred to as a vector quantity. Force and velocity are vector quantities since they possess both magnitude and direction.


Definition 1.2 Vector A vector is a quantity which has both magnitude and direction.


1.3 Graphical representation of scalars and vectors


A scalar may be represented graphically by drawing a straight line to a suitable scale such as line ab in fig. 1.1. Te line ab has only magnitude and is therefore a scalar quantity.


1 000 N or 103 N


1 000 000 J or 106 J


1000 000 or ÷ 1 000 000 0,000 001m2 10 000 or ÷ 10 000


or 10–6 m2


0,0001m2 or 10–4 m2


Meaning µ (micro) means millionth milli means thousandth centi means hundredth kilo means thousand mega means million


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140