This page contains a Flash digital edition of a book.
24 Chapter 2 • Statics


• Draw a diagonal through the parallelogram, starting at the point of application. • Insert an arrow head on the diagonal line to indicate the direction of the resultant. • Measure the length of the resultant vector and calculate itsmagnitude according to the scale.


• Measure the angle of the resultant. Solution:


Scale: 100mm= 730 N (refer to 1.3.2 and example 1.1 on pages 4 and 5) 100mm 100 = 730N


100


\1mm= 7,3 N 7,3 N = 1mm


7,3N 7,3 = 1mm


7,3 \1 N = 0,137mm For 650 N force 1 N = 0,137mm


650 N = 650 × 0,137mm \650 N = 89,05mm


OC = 180mm(bymeasurement)


According to the scale: 1mm= 7,3 N; 180mm= 180 × 7,3 N = 1 314 N


angle AOC = 18,5° (bymeasurement)


(a) Resultant = 1 314 N pulling 18,5° below the right horizontal. (b) Equilibrant is also 1 314 N, but opposite in direction to the resultant.


0 650 N (89,05 mm) 18,5° 35° Planning diaglanning diagram ram A


Parallelogram of Example 2.2 Example 2.3


Find the magnitude and direction of the resultant and equilibrant of the two forces shown in fig. 2.2 (a).


Parallelogram of Example 2.2


B


C


730 N (100 mm)


Resultant 180 mm Equilibrant


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140