This page contains a Flash digital edition of a book.
74 Chapter 4 • Heat


Te amount of heat energy a substance gains or loses is proportional to: • themass of the substance, • the specific heat capacity of the substance (i.e. the type ofmaterial), and • the change in temperature of the substance.


Tus Q = mc3t .............................................................................................................. (4.3) where Q = heat energy in joules (J) m = mass of the substance in kg c = specific heat capacity in J/kg °C


3t = change in temperature in °C or K (tf – ti) or (t2 – t1) t1 = initial temperature (or ti) t2 = final temperature (or tf)


Example 4.4


58,5 kJ of heat energy is absorbed by a copper cylinder with amass of 2 kg. The initial temperature was 20 °C and the specific heat capacity of copper is 390 J/kg °C. Calculate; (a) (b)


the rise in temperature, and the final temperature.


Solution: Q = 58 500 J m= 2 kg (a) \ 3t = Q


Q = mc3t mc


= 58 500 = 75 °C


Example 4.5


Calculate the amount of heat energy required to raise the temperature of 5 kg steel from–20 °C to 140 °C if the specific heat capacity of the steel is 0,486 kJ/kg °C.


Solution: Q = ?


Q = mc3t = 5 × 486 × 160 = 388 800 J = 388,8 kJ


2 390× (b) t1 = 20 °C 3t = t2 – t1


\ t2 = 3t + t1 = 75 + 20


= 95 °C c = 390 J/kg °C


m= 5 kg 3t = 140 – (–20) = 160° c = 486 J/kg °C


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140