This page contains a Flash digital edition of a book.
26 Chapter 2 • Statics Example 2.4


Determine; (a) (b)


65 N the magnitude of force P, and


the direction of the resultant Q from the information given in fig. 2.3.


Fig. 2.3Fig. 2.3 110°


Method • Select a suitable scale. • Draw the vector of the 65 N force (OA). • Extend a light line fromO in the direction of P. • Extend a dotted line fromA parallel to P. • Determine the length of the resultant fromthe scale. • Draw an arc with a radius equal to the resultant and the centre on O (the point of application of the forces) until it intersects the dotted line.


Q = 79,5 N P


• Draw a line fromO to this intersect (this is the resultant). • Draw a dotted line fromthe intersect, parallel to the 65 N vector until it touches the line extended in the direction of P. Tis is the end of the vector of force P.


• Measure the length of vector P and calculate itsmagnitude. • Measure the angle of the resultant.


Solution:


Scale: 100mm= 79,5 N 100mm 100 = 79 5


100 ,


\1mm= 0,795 N 0,795 N = 1mm


0 795


,N 0,795 = 1mm


0,795 \1 N = 1,258mm OB = 92mm(bymeasurement)


According to the scale: 1mm= 0,795 N 92mm= 92 × 0,795 N


\92mm= 73,14 N = Force P


Angle AOC = 60° C (bymeasurement). (a)


Force P = 73,14 N (b) Resultant pulls 60° below the left horizontal For 65 N force 1 N = 1,258mm = 65 × 1,258mm \65 N = 81,77mm


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140