This page contains a Flash digital edition of a book.
N1 Engineering Science|The Easy Way! 11 Example 1.8 It takes a car 1,5 hours to cover a distance of 170 km. Determine the average speed.


Solution: Given: t = 1,5 × 60 × 60 = 5 400 s


d = 170 × 1 000 = 170 000m v = ?


v = s t = 170 000 5 400 = 31,4 m/s


or speed = 3146060 = 113,3 km/h


, ×× 000


1 Example 1.9


It takes 2 seconds for the sound of thunder to reach a person aſter a flash of lightning. If the velocity of sound is 355 m/s, how far was the bolt of lightning?


Solution: Given: t = 2 s


v = 355 m/s s = ?


1.8.1 Constant velocity/speed


When a body moves at a constant velocity it is oſten useful to represent the relationship between the displacement and time graphically. Te graph will be a straight line and the gradient (or slope) will represent the velocity of the body, fig. 1.5.


Time is usually plotted along the x-axis and any other aspect of motion such as distance or displacement, on the y-axis.


y v = s \s = v × t t


= 355 × 2 = 710m


3s


144444424444443 3t


Time (t) in s Fig. 1.5 Displacement/time graph Te slope (gradient) of a straight line graph is 3 3 3


y x .


In this case, the slope represents the speed of the body: v = 3


s t m/s .................................................................................................................... (1.5)


Fig. 1.5 Displacement/time graph x


Displacement in m


144424443


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140