search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
50 | Sector Focus: Preservatives & Fire Retardants


SUMMARY


■Arxada uses metagenomic DNA Analysis to assess how well proposed active ingredients work


■Tanasote S40 is the first wood preservative to make use of a new class of actives


■In the development of Tanasote S40, Arxada conducted additional laboratory fungal decay tests


■Arxada is working on products to launch through 2030 and beyond


LESSONS IN CHEMISTRY


Dr Stephen Uphill looks at the chemistry that drives wood preservation


The world of wood preservation is based on innovative chemistry. Companies rarely get the opportunity to share the laboratory work that forms the majority of any Biocidal Products Regulation (BPR) efficacy package because the focus in industry press tends to be on the treated wood. In this article, Dr Stephen Uphill, Arxada’s technical lead for wood protection, provides a taste of what is scientifically involved in the development of a biocidal product for use as a wood preservative (PT 8).


ASSESSMENT OF ACTIVE INGREDIENTS A biocidal product comprises of active ingredients which provide an effect on one or more target organisms relevant to the use being considered. At Arxada we use metagenomic DNA Analysis to assess how well proposed active ingredients work to inhibit the growth of target organisms that cause wood decay. Our goal is to provide the most efficacious wood preservatives on the market, that are more sustainable and have minimal impact on the environment, human and animal health.


Above: Oxford nanopore GridION metagenomics equipment TTJ | November/December 2024 | www.ttjonline.com


For the metagenomic DNA Analysis, the Arxada research and development team use an Oxford Nanopore GridION sequencer to read DNA sequences one base at a time, as the DNA passes through a tiny hole, the ‘nanopore’. The resulting sequences are compared against the Arxada custom DNA database, which allows us to identify fungi, bacteria, archaea, viruses, and other organisms that are present in our samples. The application of this technique allowed


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89