prevent damage and short circuits (e.g., by using non-conductive caps that cover the terminals entirely).
• Except for vehicles, engines, or machinery transported by highway, rail, or vessel with prototype or low production lithium batteries securely installed, each lithium battery must be of a type that has successfully passed each test in the United Nations (UN) Manual of Tests and Criteria, as specified in 49 CFR 173.185, unless approved by PHMSA’s Associate Administrator.
• Where a vehicle could possibly be handled in other than an upright position, the vehicle must be secured in a strong, rigid outer packaging. The vehicle must be secured by means capable of restraining the vehicle in the outer packaging to prevent any shifting during transport that would change the orientation or cause the vehicle to be damaged.
• Where the lithium battery is removed from the vehicle and is packed separate from the vehicle in the same outer packaging, the package must be classified as “UN3481, Lithium-ion batteries packed with equipment” or “UN3091, Lithium metal batteries.
What are the additional stowage requirements to transport EV’s powered by lithium batteries when carried on a vessel? See 49 CFR 176.905(a):
• For vehicles with batteries installed, the batteries shall be protected from damage, short circuit, and accidental activation during transport.
• Each lithium battery must be of a type that has successfully passed each test in the UN Manual of Tests and Criteria unless approved by PHMSA’s Associate Administrator.
• A vehicle showing any signs of leakage or electrical fault—such as inability to start or move under its own power—or signs of prolonged exposure to water, is forbidden for transportation onboard a vessel.
• Where a lithium battery installed in a vehicle is damaged or defective, the battery must be removed and transported according to 49 CFR 173.185(f), unless otherwise approved by PHMSA’s Associate Administrator.
Earlier in the year, the TT Club issued this press release.
Fire not the only danger with lithium-ion batteries
Devastating consequences of rapidly spreading, and often challenging to extinguish fires involving the batteries particularly in electric vehicles (EV) on board ships, and other parts of the supply chain have been well- documented in recent months. There is however less awareness of the highly toxic combustion products that are released and their respective impact to the health and wellbeing of those exposed to the gases.
Based on the evidence of past fires the time between the initiation of a failed battery igniting to a discharge of toxic vapour can be measured in seconds rather than minutes. This is due to a process known as thermal runaway. The rapid sequence of events typically occurs where an internal electrical short within one of the battery cells generates heat; this breaks down the internal structure of the battery, increasing the rate of the reaction in an ever-increasing cycle. There is often a dramatic release of energy in the form of heat and a significant emission of toxic gases.
Neil Dalus of TT endeavours to paint a picture of the dangers. “During a lithium battery thermal runaway event, research has shown that significant amounts of vapour can be produced per kWh (kilowatt hour). In many common supply chain scenarios, including ships’ holds and warehouses, the reality is that such vapour clouds are likely to accumulate. Even when the clouds are able to disperse, the potential toxic effects may occur at lower concentrations.”
Drivers, stevedores, ships’ crews and first responders attempting to control the blazes encounter what might appear to be smoke but is in fact a mix of toxic gases, generated quickly and in large volumes. These gases once in the atmosphere behave differently to smoke, often pooling at floor level due to their density. “Traditionally where fires and smoke are concerned one would stay low to avoid inhalation, doing so where lithium battery fires are concerned is likely to prove problematic,” observes Dalus.
The toxicity of gases given off from any given lithium-ion battery differ from that of a typical fire and can themselves vary but all remain either poisonous or combustible, or both. They can feature high percentages of hydrogen, and compounds of hydrogen, including hydrogen fluoride, hydrogen chloride and hydrogen cyanide, as well as carbon monoxide, sulphur dioxide and methane among other dangerous chemicals.
Early detection of such an incident can also be pivotal in managing the response, camera and thermal imaging could enable an expedient response. Such equipment might have already become commonplace for some modes, however conducting a thorough risk assessment for example when cargo is stored in warehouses would be prudent. As Dalus comments however, “Given the hazardous nature of this vapour, if any of these measures are not in place then the best course of action is to evacuate the area and leave the incident response to the emergency services, ensuring that the known risks are appropriately communicated.”
The article in full can be read at
https://bit.ly/3ZPpFPw. Or scan the QR code.
64 | ISSUE 106 | DEC 2023 | THE REPORT
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144