search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Spencer: Alice is writing a book for Engineering students. So, Alice, the key question: What’s the point of your book?


Alice:


I want students to notice engineering principles in practice all around them – I mean, in their everyday life. I want them to ask questions all the time. What does that machine do? How does it work?


Spencer:


So how important are engineering principles to everyday life?


Alice: Well, they’re a basic part of everything we do. Spencer: Even walking? Alice:


Absolutely. There are engineering principles in walking, but I’m really more interested in machines in everyday life.


Spencer: OK. So, can you give us an example? Alice:


Spencer: Alice:


Yes, of course. In my book, I talk about the engineering principles in the design of roller coasters.


Roller coasters? Why do you talk about roller coasters?


Because they show basic principles of engineering.


Spencer: Really? How many basic principles? Alice: Well, three, actually. Spencer:


Alice: Alice:


That’s good! Not too many to remember! So what’s the first principle?


It’s probably very obvious. It’s this: Gravity pulls everything down towards the Earth.


Spencer: OK. Gravity pulls everything down, but how does gravity apply to a roller coaster?


Well, roller coasters have lots of down slopes. We can use gravity on the down slopes as the energy source.


Spencer: What about the up slopes? We can’t use gravity on them.


Alice: Alice:


No, so we must have more down slopes than up slopes.


Spencer: How can we have more down than up? It’s impossible.


Not really. We start with a big up slope. It’s called the lift hill. Machinery pulls the roller coaster car to the top of this hill. But after that, the car does not have an energy source except gravity.


Spencer: So how does it get up the hills? Alice:


Spencer: Can you say that again?


That’s the second principle: The conservation of energy. We cannot create energy or destroy it. But we can change it.


Alice:


Yes, we cannot create energy or destroy it. But we can change it. The machinery pulls the roller coaster to the top of the lift hill. It uses mechanical energy and turns it into potential energy.


Spencer: What does potential energy mean? Alice:


It becomes kinetic energy … movement energy.


It is the ability to do work. The roller coaster car at the top of the hill accelerates with the force of gravity.


Spencer: And the potential energy becomes …? Alice:


Spencer: And the kinetic energy moves the car up to the top of the next hill?


Alice:


Exactly. The car decelerates, but it reaches the top and the whole process begins again.


Spencer: De … decelerates? Alice: Yes, it slows down. Spencer: OK. So that’s gravity and the conservation of energy. What’s the final principle?


Alice:


Well, it’s to do with the final bit of the roller coaster. How does the roller coaster stop?


Spencer: Does it have brakes? Alice: Not really, because it doesn’t have a driver. Spencer: So it should just keep on going … Alice:


Spencer: Why does it stop? Alice:


… But it stops. It stops by the entrance, so people can get off and more people can get on.


That’s the final principle: Friction. All moving things experience friction. On the roller coaster, friction comes from the air around the car, and from the roller coaster track, and from the axles of the roller coaster car and so on.


Spencer: I understand … I think. 068


Unit 5, A problem-solving approach Exercise F


Listen to Part 2. Spencer:


So we’ve talked about three engineering principles – gravity, conservation of energy and friction, but why is it important for students to look for engineering principles in everyday life?


Alice:


Well, I think there are two reasons. Firstly, engineering is about everyday life! It is not an academic study – I mean, something you just do at university.


Spencer: OK. So students need to understand this? Alice: Yes, it’s essential. Spencer: Why? Alice:


Because, secondly, engineering is about solving problems. So students need to develop a problem-solving approach to life.


209


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235