search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
6 February / March 2021


Chapter 50. Available from: https://www. ncbi.nlm.nih.gov/books/NBK453059/ doi: 10.1101/glycobiology.3e.050


19. Rudd P, Karlsson NG, Khoo KH, et al. Glycomics and Glycoproteomics. 2017. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 51. Available from: https://www. ncbi.nlm.nih.gov/books/NBK453015/ doi: 10.1101/glycobiology.3e.051


20. Hofmann J, Pagel K. Glycan Analysis by Ion Mobility-Mass Spectrometry. Angew Chem Int Edit. 2017;56(29):8342-9. doi: 10.1002/anie.201701309.


Figure 3B: Overlaid extracted MOBILigram of released permethylated non-reduced N-glycans from the HRIM analysis in 2 minutes with the added information of the resolution of G5 isomers (starred) achievable only by HRIM. a) Zoom in on arrival times 800-1500ms showing resolution of G5 isomers.


9. Ratner M. Genentech’s glyco-engineered antibody to succeed Rituxan. Nat Biotechnol. 2014;32(1):6-7.


10. Crispin M, Ward AB, Wilson IA. Structure and immune recognition of the HIV glycan shield. Annu Rev Biophys. 2018;47:499-523.


11. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARSCoV- 2 spike. Science 2020;369:330-3.


12. Shajahan A, Supekar NT, Gleinich AS, Azadi P. Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology. 2020;1-8 doi: 10.1093/glycob/ cwaa042


13. Shivatare VS, Shivatare SS, Lee CD, Liang CH, Liao KS, Cheng YY, Saidachary G, Wu CY, Lin NH, Kwong PD, Burton DR, Wu CY, Wong CH. Unprecedented role of hybrid N-glycans as ligands for HIV-1 broadly neutralizing antibodies. J Am Chem Soc. 2018;140(15):5202-10. doi: 10.1021/ jacs.8b00896. PubMed PMID: 29578688.


14. Lv H, Wu NC, Tsang OT, Yuan M, Perera R, Leung WS, So RTY, Chan JMC, Yip GK, Chik TSH, Wang Y, Choi CYC, Lin Y, Ng WW, Zhao J, Poon LLM, Peiris JSM, Wilson IA, Mok CKP. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV Infections. Cell Rep.


2020;31(9):107725. Epub 2020/05/20. doi: 10.1016/j.celrep.2020.107725. PubMed PMID: 32426212; PMCID: PMC7231734.


15. Seeberger PH. Monosaccharide diversity. 2017. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 2. Available from: https://www.ncbi.nlm.nih. gov/books/NBK453086/ doi: 10.1101/ glycobiology.3e.002


16. Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 1012 structures for a reducing hexasaccharide: The Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4(6):759-767. doi:10.1093/glycob/4.6.759


17. Palaniappan KK, Bertozzi CR. Chemical Glycoproteomics. Chem Rev. 2016;116(23):14277-306. doi:10.1021/acs. chemrev.6b00023. PubMed PMID: 27960262; PMCID: PMC5327817.


18. Mulloy B, Dell A, Stanley P, et al. Structural analysis of glycans. 2017. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017.


21. Hollerbach AL, Li A, Prabhakaran A, Nagy G, Harrilal CP, Conant CR, Norheim RV, Schimelfenig CE, Anderson GA, Garimella SVB, Smith RD, Ibrahim YM. Ultra-High- Resolution Ion Mobility Separations Over Extended Path Lengths and Mobility Ranges Achieved using a Multilevel Structures for Lossless Ion Manipulations Module. Anal Chem 2020;92(11):7972–9.


22. Arnaud CH. Resolving power for the people: Ion mobility-mass spec expands its offerings. C&EN. 2020;98(20).


23. Wormwood KL, Deng L, Hamid AM, DeBord D, Maxon L. The potential for Ion Mobility in pharmaceutical and clinical analyses. Advancements of Mass Spectrometry in Biomedical Research. 2019. p. 299-316.


24. Wormwood Moser KL, Arndt JR, Yadav A, Krufka S, Van Aken G, DeBord D, Webster G, Wells L, Tiemeyer M, Maxon L. Structures for Lossless Ion Manipulations (SLIM)-Mass Spectrometry (MS) for High Resolution and High Throughput Permethylated N-and O-Glycan Analysis. MOBILion Systems Inc. 2019.


Disclaimer: MOBILion is the exclusive licensee of the SLIM technology for commercialisation purposes. HRIM is intended for research use only. Not for diagnostic procedures.


For more information, visit MOBILion Systems Inc (https://mobilionsystems.com)


*Lance Wells is a Georgia Research Alliance Distinguished Investigator, Professor of Biochemistry and Molecular Biology, Director of integrated life sciences, and co-director of the Thermo Fisher appointed Center of Excellence in Glycoproteomics at the CCRC at the University of Georgia. He can be reached at lwells@ccrc.uga.edu.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56