search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
37


interfere with the separation and/or cause carryover problems is used.


As the need for fast screening methods that rely upon chromatographic separations continues to increase, the speed of every aspect of the analytical technique must be examined. Novel strategies that employ higher throughput sample introduction will be a critical aspect of the next generation of rapid measurement tools. Whether the next generation of sample injection is based upon parallel sampling, segmented flow, or some other technique is yet to be identified, most practitioners of ultrafast chromatography agree that it is a major bottleneck to be overcome. For now, the advances that have brought autosampler cycle times below 10 seconds still represent an outstanding improvement from previous instrument generations and can still facilitate higher throughput analysis in nearly any lab that relies upon LC.


References


1. Zawatzky, K., Barhate, C. L., Regalado, E. L., Mann, B. F., Marshall, N., Moore, J. C., Welch, C. J., Overcoming “speed limits” in high throughput chromatographic analysis. J. Chromatogr. A 2017, 1499, 211–216.


2. De Vos, J., Broeckhoven, K., Eeltink, S., Advances in Ultrahigh-Pressure Liquid Chromatography Technology and System Design. Anal. Chem. 2016, 88, 262–278.


3. Paul, C., Steiner, F., Dong, M. W., HPLC Autosamplers : Perspectives, Principles, and Practices. LC-GC North Am. 2019, 37, 514–529.


4. Neubauer, M., A Multi-Tasking Software Approach to Increasing Productivity and Throughput in UHPLC. Technical Note 172, 2016.


5. Fandiño, A., Schuette, S., Ultra-Fast Liquid Chromatography Using the Agilent 1100 Series HPLC System and 1.8-Μm ZORBAX SB C18 Rapid Resolution HT Columns. Technical Note 5989-1603EN, 2004.


6. Taylor, A. M., Jarvis, M. J. Y., Cabrices, O. G., A High Throughput Automated Sample Preparation and Analysis Workflow for Comprehensive Forensic Toxicology Screening Using LC/MS/MS. Technical Note 8130213-01, 2013.


7. Kresge, G. A., Wong, J.-M. T., De Pra, M., Steiner, F., Grinias, J. P., Using Superficially Porous Particles


and Ultrahigh Pressure Liquid Chromatography in Pharmacopeial Monograph Modernization of Common Analgesics. Chromatographia 2019, 82, 465–475.


8. Kresge, G. A., Grosse, S., Zimmer, A., Grinias, K. M., De Pra, M., Wong, J. T., Steiner, F., Grinias, J. P., Strategies in developing high‐throughput liquid chromatography protocols for method qualification of pharmacopeial monographs. J. Sep. Sci. 2020, 43, 2964-2970.


9. Gilar, M., McDonald, T. S., Gritti, F., Impact of instrument and column parameters on high-throughput liquid chromatography performance. J. Chromatogr. A 2017, 1523, 215–223.


10. Welch, C. J., Gong, X., Schafer, W., Pratt, E. C., Brkovic, T., Pirzada, Z., Cuff, J. F., Kosjek, B., MISER chromatography (multiple injections in a single experimental run): The chromatogram is the graph. Tetrahedron Asymmetry 2010, 21, 1674–1681.


11. Hamper, B. C., Zawatzky, K., Zhang, V., Welch, C. J., Rapid determination of humulones and isohumulones in beers using MISER LC-MS analysis. J. Am. Soc. Brew. Chem. 2017, 75, 333–338.


12. Welch, C. J., Regalado, E. L., Kress, M. H., Kraml, C., Welch, E. C., Welch, M. J., Semmelhack, H., Almstead, D., Kress, A. S., Hidalgo, N. A., MISER LC-MS analysis of teas, soft drinks, and energy drinks. LC-GC North Am. 2015, 33, 262–269.


13. Welch, C. J., Regalado, E. L., Welch, E. C., Eckert, I. M. K., Kraml, C., Evaluation of capsaicin in chili peppers and hot sauces by MISER HPLC-ESIMS. Anal. Methods 2014, 6, 857–862.


14. Welch, C. J., High throughput analysis enables high throughput experimentation in pharmaceutical process research. React. Chem. Eng. 2019, 4, 1895–1911.


15. Miller, L. M., Pinkston, J. D., Taylor, L. T., Preparative Achiral and Chiral SFC – Method Development, Stationary Phases, and Mobile Phases. In Modern Supercritical Fluid Chromatography: Carbon Dioxide Containing Mobile Phases, John Wiley & Sons, Inc. 2019.


16. Watabe, Y., Nakajima, K., Terada, H., Increased Throughput with Nexera GPC System: Overlapped Injection and Simultaneous Determination of Polymer Additives. Application News Report L537, 2019.


17. Terada, H., Koterasawa, K., Kihara, T., Increased Analysis Throughput by Overlapped Injection Using the SIL-40 Series Autosampler. Technical Note C190-E235, 2019.


18. Thompson, J. W., Lieberman, R. A., Jorgenson, J. W., Hydrodynamic chromatography for the size classification of micron and sub-micron sized packing materials. J. Chromatogr. A 2009, 1216, 7732–7738.


19. Grinias, J. P., Godinho, J. M., Lunn, D. B., Jorgenson, J. W., Evaluation of preparative hydrodynamic chromatography of silica stationary phase supports. J. Chromatogr. A 2014, 1370, 270–273.


20. Grinias, J. P., Characterization and Control of Band Broadening in Ultra- High Pressure Liquid Chromatography Columns, University of North Carolina at Chapel Hill, 2014.


21. Farnan, D., Moreno, G. T., Stults, J., Becker, A., Tremintin, G., van Gils, M., Interlaced size exclusion liquid chromatography of monoclonal antibodies. J. Chromatogr. A 2009, 1216, 8904–8909.


22. Kahle, J., Wätzig, H., Interlaced Size Exclusion Chromatography for faster protein analysis. Eur. J. Pharm. Biopharm. 2018, 126, 101–103.


23. Uliyanchenko, E., Size-exclusion chromatography - From high- performance to ultra-performance. Anal. Bioanal. Chem. 2014, 406, 6087–6094.


24. Matsuda, R., Hayashi, Y., Ishibashi, M., Takeda, Y., An information theory of chromatography. II. Application of FUMI to the optimization of overlapped chromatograms. J. Chromatogr. A 1989, 462, 23–30.


25. Gritti, F., Guiochon, G., On the minimization of the band-broadening contributions of a modern, very high pressure liquid chromatograph. J. Chromatogr. A 2011, 1218, 4632–4648.


26. Desmet, G., Broeckhoven, K., Extra- column band broadening effects in contemporary liquid chromatography: Causes and solutions. TrAC Trends Anal. Chem. 2019, 119, 115619.


27. Grinias, J. P., Bunner, B., Gilar, M., Jorgenson, J. W., Measurement and Modeling of Extra-Column Effects Due to Injection and Connections in Capillary Liquid Chromatography. Chromatography 2015, 2, 669–690.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56