search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
5 Looking Ahead


Glycan analysis, or glycomics, in which scientists elucidate the specific glycosylation patterns of biomolecules, has become an essential aspect of biomedical research, drug development, and biopharma quality control. Compared to traditional methods, HRIM excels in ease of use, generalisability of one method to multiple analyte classes, resolution, and speed of analysis. These attributes permit researchers to tackle the complexity of glycan structures and their heterogeneity on timescales that enable high-throughput analysis. The HRIM analyses discussed here are nearly 100-fold faster than LC analyses, but are only the beginning. More rapid sampling - a subject of ongoing development - could speed analysis times by additional orders of magnitude.


References


Figure 3A: Extracted high mannose reduced permethylated N-linked glycans separated by 180-minute LC workflow.


In HRIM, as with other ion mobility technologies, an ion’s migration time is determined by its mass-to-charge ratio and its size and shape. As ions are driven along the separation path; the collision with an inert buffer gas slows them down to a degree proportional to their size. The length of the ion separation path is crucial to achieving the high degree of separation required to gain adequate resolution of glycans with challenging structural diversity. MOBILion’s first HRIM product has an ion path of 13 meters (42 feet). The unique serpentine path design of the printed circuit boards allows for the 13m ion path to fit into a device the size of a briefcase allowing for unparalleled separation of isomeric structures.


HRIM set-up is straightforward because it occurs in the gas phase under nearly ideal conditions. There is no need to optimise columns, flow rates, or liquid components as with LC. In addition, HRIM achieves rapid separations with data collection in the order of milliseconds to seconds. Much has been written about how the most advanced HRIM approaches boost resolving power by expanding the pathlength [21] and when combined with MS (HRIM-MS, Figure 2) offers tremendous potential for seamless separation of glycans followed by structural determination in biomedical and clinical research [22,23].


HRIM-MS in Practice


Recent work at the Complex Carbohydrates Research Center (CCRC) at the University of Georgia, Athens, Georgia, USA, has demonstrated the performance of HRIM-MS. Experiments compared this next-generation ion mobility technology, with an optimised LC-MS protocol [24].


The experimental set-up at CCRC used the MOBILion HRIM instrument coupled to an Agilent 6545 Quadrupole Time of Flight (Q-ToF). Permethylated N-glycans released from Fetuin and RNaseB were analysed by 180-minute reverse phase nanoflow LC-MS/ MS, typical of a traditional LC N-glycan analysis workflow. The same glycan species were analysed using HRIM-MS. In 2 minutes, all glycans identified using the 180-minute LC separation were separated and identified using the HRIM-MS workflow. This 90-fold time savings allows, for example, a three- month LC analysis to be compressed to a one-day analysis. Moreover, the HRIM-MS analysis resolved the structural isomers of a biantennary, disialylated complex glycan that could not be resolved with LC (Figure 3B, G5).


Being able to rapidly run hundreds of samples enables the establishment of a ‘normal range’ of glycan heterogeneity. That advantage allows greater insight into the behaviour of glycans in a wide range of illnesses, in a time frame compatible with the fast pace of biopharmaceutical development.


1. Varki A. Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harb Perspect Biol. 2011;3(6). doi: 10.1101/cshperspect.a005462. PubMed PMID: 21525513; PMCID: PMC3098673.


2. Varki A. Biological roles of glycans. Glycobiology. 2017;27(1):3-49. doi: 10.1093/ glycob/cww086. PubMed PMID: 27558841.


3. Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Ann Rev of Pathol- Mech, 2015;10(1):473–510. doi:10.1146/ annurev-pathol-012414-040438


4. Baum LG, Cobb BA. The direct and indirect effects of glycans on immune function. Glycobiology. 2017;27(7):619–24.


5. Szymanski CM, Schnaar RL, Aebi M. Bacterial and viral infections. 2017. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 42. Available from: https://www. ncbi.nlm.nih.gov/books/NBK453060/ doi: 10.1101/glycobiology.3e.042


6. Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: parts, systems, and applications. ACS Syn Bio. 2020;9(7):534-62.


7. Wang L-X, Tong X, Li C, Giddens JP, Li T. Glycoengineering of antibodies for modulating functions. Annu Rev Biochem. 2019; 88:26.1–26.27.


8. Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov. 2009;8:226-34.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56