search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
23


Figure 5. Concentration curve for angiotensin in all three broth dilutions. Good linearity and reproducibility were observed for the sample concentrations out of the minimally prepared samples.


Table 1. Matrix effects observed for different PEG400 concentrations. Standards (top row) and QC samples prepared at the 102.4 ng/ml level. Values are of n=5.


Communications in Mass Spectrometry, 2015. https://doi.org/10.1002/rcm.7274.


2. Häbe, Tim et al., Ultrahigh-Throughput ESI-MS: Sampling pushed to six Samples per Second by Acoustic Ejection Mass Spectrometry, ChemRxiv. Preprint. (2020). https://doi.org/10.26434/ chemrxiv.12093918.v1.


The effects of different levels of PEG400 in untreated plasma can be seen in Table 1 at the 102.4 ng/mL level as an example. The deviation from nominal at other concentrations was very similar to the 102.4 level for the two PEG400 levels.


Wide Applicability


In addition to high-throughput parallel medicinal chemistry [2], AEMS has been investigated in numerous applications, including high-throughput pharmacology screening, label-free in situ enzyme kinetics and in vitro and in vivo adsorption, distribution, metabolism, elimination, pharmacokinetic (PK) and biomarker analysis [6]. Whether analysing chemical reactions or performing in vivo and in vitro biological analytical quantification, the AEMS approach compared favourably to conventional techniques.


AEMS has the potential to ultimately drive the adoption of MS across a number of fields where it has previously been deemed impractical. AEMS can also be used in many other fields beyond the pharmaceutical industry that require high sample-readout speed, such as synthetic biology and food and environmental analysis. In all of these applications, scientists get the benefits of simplicity and speed, plus more confidence in their results.


Potential to Change Drug Discovery


The use of ESI-MS permits excellent quantification performance in terms of sensitivity, reproducibility, and linear dynamic range without carry-over, and is applicable to a wide range of analytes. It is evident that the AEMS approach provides significant increases in sample analysis while maintaining, or perhaps improving, the analytical performance of conventional techniques. For routine analysis, the speed and simplicity of using this revolutionary platform offers an attractive solution for high-turnaround bioanalytical laboratories.


AEMS technology also might have the potential to change drug discovery and the development of precision therapies. In the search for safe and efficacious drugs, speed of decision making is critical to the discovery process and to the identification of potential targets that should be advanced for further development. With the potential to impact the entire workflow from start to finish, including sample prep, data acquisition and data processing, AEMS aim to reduce the timescale to produce data used in key decision making.


References:


1. Van Berkel Gary, Kertesz Vilmos. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry, Rapid


3. DiRico, Kenneth J. et al., Ultra- High-Throughput Acoustic Droplet Ejection-Open Port Interface-Mass Spectrometry for Parallel Medicinal Chemistry. ACS edicinal Chemistry Letters. (2020). https://doi.org/10.1021/ acsmedchemlett.0c00066.


4. Kern, R.; Liu, C.; Aw, C.C. Rapid MS/ MS analysis with Acoustic Ejection Mass Spectrometry (AEMS): Using the SCIEX Echo® MS System to break bottlenecks in quantitative mass spectrometry throughput. SCIEX, 2020. https://sciex. com/content/dam/SCIEX/pdf/tech-notes/ all/Rapid-MSMS-analysis-with-Acoustic- Ejection-Mass-Spectrometry.pdf.


5. Kern, R.; Liu, C. True high throughput bioanalysis using the Echo® MS System: Rapid sample analysis using AEMS technology improves bioanalytical study turnaround. SCIEX, 2020. https://sciex. com/content/dam/SCIEX/pdf/tech-notes/ all/True-High-Throughput-Bioanalysis- Using-the-Echo-MS-System.pdf.


6. Baghla, R.; Lie, C.; Kern, R. Rapid quantitative analysis of fermentation broth samples to assess efficiency of engineered yeast strain turnover: Using Acoustic Ejection Mass Spectrometry on the Echo® MS System. SCIEX, 2020. https://sciex.com/documents/tech%20 notes/Rapid-quantitative-analysis-of- fermentation-broth-samples-yeast-strain- turnover.pdf.


7. Liu, C. et al. “Acoustic Ejection Mass Spectrometry for High-Throughput Analysis,” bioRxiv Preprint, Posted


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56