search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
44 February / March 2021


acid), significant tailing is observed for the T37 peak, obscuring the presence of small trailing peaks (see Figure 6B). In contrast, using both a system and column that incorporate MaxPeak HPS technology, the T37 peak is sharp and symmetric, allowing accurate quantification of the trailing peaks. These minor peaks arise from deamidated variants, and their areas relative to the main T37 peak are monitored for quality control of therapeutic monoclonal antibodies [25].


In an attempt to reduce the tailing of the T37 peptide peak when using conventional metal surface technology, the UPLC system was conditioned by washing with a 30% phosphoric acid solution for 20 min followed by flushing with water until the pH was neutral. This was found to temporarily reduce the tailing of the T37 peak, but the tailing factor increased over 48 h of exposure to the 0.1% formic acid mobile phases, indicating an increase in surface adsorption activity. This is shown in Figure 7. In contrast, with MaxPeak HPS technology similar results were obtained with and without the phosphoric acid wash, with consistent assay performance observed from beginning to end when this separation was performed over the same time period. Equally important is that the tailing factor was lower when using both a system and column that incorporate MaxPeak HPS technology, resulting in excellent resolution of the deamidation variants, allowing them to be accurately and reproducibly quantified.


Conclusions


These results demonstrate the challenges posed by interactions of analytes with the metal surfaces in conventional UPLC systems and columns. Mitigation of these interactions using time-consuming conditioning approaches can add hours to the analysis time, and don’t guarantee that accurate and reproducible results will be obtained. Using the new capabilities afforded by systems and columns that


incorporate MaxPeak HPS technology, separations of metal-sensitive analytes may now be carried out without extensive conditioning protocols, providing accurate and reproducible results in a much shorter time. As demonstrated here, this technology is important for a range of analyte classes, including acidic polar metabolites, oligonucleotides and acidic peptides. Other analytes containing phosphate and/ or carboxylate groups show similar benefits [16], as do some compounds containing additional electron-rich functional groups. Consequently, this technology is likely to be beneficial for a range of applications.


Acknowledgments


The authors thanks Mathew DeLano and Andrew Bates-Harrison for providing the MaxPeak HPS hardware and Gary Izzo and Glen McGrath for packing the columns used in these experiments.


References


1. J.R. Mazzeo, U.D. Neue, M. Kele, R.S. Plumb, Anal. Chem. 77 (2005) 460A.


2. M.E.Swartz, J. Liq. Chromatogr. Relat. Technol. 28 (2005) 1253.


3. D.T.-T. Nguyen, D. Guillarme, S. Rudaz, J.-L. Veuthey, J. Sep. Sci. 29 (2006) 1836.


4. S.M. Cramer, B. Nathanael, C. Horváth, J. Chromatogr. 295 (1984) 405.


5. A. Wakamatsu, K. Morimoto, M. Shimizu, S. Kudoh, J. Sep. Sci. 28 (2005) 1823.


6. Y. Asakawa, N. Tokida, C. Ozawa, M. Ishiba, O. Tagaya, N. Asakawa, J. Chromatogr. A 1198-1199 (2008) 80.


7. J.C. Heaton, D.V. McCalley, J. Chromatogr. A 1427 (2016) 37.


8. R. Tuytten, F. Lemière, E. Witters, W. Van Dongen, H. Slegers, R.P. Newton, H. Van Onckelen, E.L. Esmans, J. Chromatogr. A 1104 (2006) 209.


9. K.E. Collins, C.H. Collins, C.A. Bertran, LCGC 18(6) (2000) 600.


10.S. Kromidas., ed. The HPLC Expert II, Wiley-VCH, 2017.


11.M. De Pra, G. Greco, M.P. Krajewski, M.M. Martin, E. George, N. Bartsch, F. Steiner, J. Chromatogr. A 1611 (2020) 460619.


12.https://sisw.cz/cz/downloads/polymer_ resistance.pdf.


13.J. Lough, M.J. Mills, J. Maltas, J. Chromatogr. A 726 (1996) 67.


14.P. Hambleton, W.J. Lough, J. Maltas, M. Mills, J. Liq. Chromatogr. Relat. Technol.18 (1995) 3205.


15.M. C. Jung, Waters white paper, 720006571EN May 2019.


16.T.H. Walter, M. Trudeau, J. Simeone, P. Rainville, A.V. Patel, M.A. Lauber, J. Kellett, M. DeLano, K. Brennan, C. Boissel, R. Birdsall, K. Berthelette, Waters white paper, 720007128EN Feb. 2021.


17.K.D. Wyndham, J.E. O’Gara, T.H. Walter, K.H. Glose, N.L. Lawrence, B.A. Alden, G.S. Izzo, C.J. Hudalla, P.C. Iraneta, Anal. Chem. 75 (2003) 6781.


18.J.R. Knowles, Ann. Rev. Biochem. 49 (1980) 877.


19.M. Gilar, Z. Li, J. MacLean, Waters application note 720007012, Sept. 2020.


20.N. Pardi, M. J. Hogan, F. W. Porter, D. Weissman, Nat. Rev. Drug Discover. 17(4) (2018) 261.


21.K.E. Lundin, O. Gissberg, C.I.E. Smith, Hum. Gene Ther. 26(8) (2015) 475.


22.H.A. Erlich. PCR Technology – Principles and Applications for DNA Amplification. Palgrave Macmillan, London, 1989.


23.B. Basiri, M.G. Bartlett, Bioanalysis 6(11) (2014) 1525.


24.R.E. Birdsall, J. Kellet, S. Ippoliti, N. Ranbaduge, H. Shion, Y.Q. Yu, Waters application note 720007003, Sept. 2020.


25.M. Cao, W. Xu, B. Niu, I. Kabundi, H. Luo, M. Prophet, W. Chen, D. Liu, S.V. Saveliev, M. Urh, J. Wang, J. Pharm. Sci. 108(11) (2019) 3540.


Centrifuge Designed for Glass Autosampler Vials


The Vial Centrifuge™ from Microsolv has a specially designed rotor and 8 adapters and cushions for approved glass MRQ™ (1.2ml) and Max Recovery (1.8ml) single piece, heavy wall autosampler vials. This compact, benchtop centrifuge offers 16,800g with a unique airflow system to keep samples cool. The Vial Centrifuge™ is excellent for samples in organic solvents and CE marked.


More information online: ilmt.co/PL/g01e


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56