40
Measurement and Testing
Distillation Process Analyser with ASTM D86 Compliance
Glenn Fannin, Business Development Manager, BARTEC BENKE GmbH Email:
Glenn.Fannin@
bartec-benke.de
Te redesigned BARTEC BENKE Distillation Process Analyser remains the benchmark for physical property analysers. Te new DPA-4 model is still the only ASTM D86 compliant analyser available with respect to both, apparatus and procedure. For this reason, the analyser operates neither with calibration requirements nor with measurement corrections by means of correlation equations.
Refinery operator requirements have had a significant influence on the redesign of the new model. Te result is the faster Rapid Analysis Method (RAM) beside the Standard Analysis Method (SAM) where the “recovered volume” and corresponding vapour temperature from the initial boiling point (IBP) to the final boiling point (FBP) of a vapourised and condensed liquid or vice versa is detected. Due to the identical measurement procedure and identical design of the measurement apparatus, the analyser is fully compliant with the ASTM D86 laboratory standard.
Description of the measurement procedure according to ASTM D86 standard
The ASTM D86 standard specifies, a sample with a volume of 100 ml is dosed into the distillation flask where it is heated up to the IBP. The sample will be evaporated by further heating and afterwards liquefied by means of running through the condenser unit. At a recovered volume of 5% detected, the heating is automatically regulated to a distillation rate of 4 to 5 ml/min until 5% residue of the total volume is left in the flask. The measuring cycle has finished once the FBP has been detected. After the measuring cycle, the system will be cooled and prepared for the next cycle by clearing and flushing with sample and purge gas.
According to the ASTM D86 standard, the distillation rate has to be between 4 and 5 ml/min. Figure 2 shows the interdependence of the distillation rates and the required time to reach different points on the distillation curve. It is clear to see that an additional 5 minutes are added to the analysis time to reach the IBP when a distillation rate of 4 ml/min has been used. It is also clear to see that, as the distillation process progresses, the difference in time it takes to reach the FBP for the two different distillation rates increase. As a matter of fact, once the FBP has been reached, the time difference is 10 minutes.
Figure 2: Distillation Cycle Times According To ASTM D86 Figure 1: Distillation Cycle Time
Figure 1 shows a full distillation cycle in four defined sub-phases for Group 1 products according to the requirements of ASTM D86 (Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure). Phase 1 (P1) defines the time from first application of heat to initial boiling point temperature where the IBP has to be detected, between 5 and 10 minutes. The time spent for Phase 2 (P2) from the detection of the IBP to 5% recovered volume has to meet the range of 60 to 100 seconds. Furthermore heating has to be regulated so that a constant average distillation rate of 4 to 5 ml/min is reached and the 5% recovered to 5 ml residue in the flask is met between 18 to 22 minutes (P3). The recorded time from 5 ml residue to the FBP must not exceed 5 minutes (P4).
The complete cycle has to be repeated from the beginning, if any of these phases exceed the defined maximum times.
After the completion of the distillation cycle, the analyser system has to be cooled down, cleared, flushed and subsequently the flask will be filled with fresh sample to start a new measurement cycle.
A full distillation cycle according to ASTM D86 requirements takes 29 to 39 mins. But fast process control often requires faster response times.
In comparison to Figure 2, Figure 3 shows two additional options to speed up the distillation cycle. Again the distillation rates according to the ASTM D86 standard are shown in green and red. The grey part here is defined as the Standard Analysis Method (SAM). Possibilities of speeding up the distillation cycle are often requested by users when faster response times of the analysers are needed. Two examples of faster procedures are shown in Figure 3 by using the same ASTM compliant design of the apparatus. The blue graph shows that the 95% point of recovered volume can be determined quicker by increasing the distillation rate to 9 ml/min. If the total sample volume which was originally 100 ml is reduced to 50 ml and a distillation rate of 9 ml/min is chosen, than an even faster determination of any point on the distillation curve is possible.
Figure 3: Distillation Cycle Times According To ASTM D86 And Additional Tuning Capabilities
AUGUST / SEPTEMBER 2013 •
WWW.PETRO-ONLINE.COM
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52