search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
53


Figure 2: General processing workflow utilising SFE and other CO2


temperature and pressure, specific classes of compounds in the plant are targeted by carefully controlling the temperature and pressure during extraction and collection of the extract.


Extraction Analysis


Process analysis is essential during each stage of the cannabis production workflow (Figure 3). However, many cannabis production facilities contract out all of their samples to third-party analytical testing laboratories. Since each sample carries a significant price tag, processors are selective in the samples they submit for analytical testing. This lack of analytical information produces a knowledge gap with regard to basic quality control checkpoints and formulation research and development that can result in workflow inefficiencies and inconsistent products. In addition, testing results can take a week or more for labs to turn around samples, meaning acute issues linger until results are returned and corrective actions are made. Moving analysis in-house, where the samples are generated, significantly reduces turn- around time for receiving feedback about a particular process. This results in increased productivity and minimises potential quality issues by identifying them early.


One of the most important tools extraction facilities can use to track extraction quality and performance is collecting detailed mass


-related technologies [6].


Figure 3: Important cannabis production testing checkpoints.


balance data. Mass balance data is a simple ‘mass in’ and ‘mass out’ calculation essential for tracking batch extractions; the goal is to account for every gram of high value product during each processing step. During extraction this is accomplished by assaying the raw bio-botanical material for specific COIs, the target compounds from plant extraction. Since mass is conserved throughout the extraction process, the amount of COI expected to be present in the extract can be calculated and the actual yield determined post extraction. This gives a better idea of the true efficiency and return on the extraction. Following is an example of how routine mass balance analyses can be used to help monitor batch extractions of a hemp feedstock.


Routine Mass Balance Analysis for the Extraction of Hemp Experimental:


Raw hemp extract was generated from a 20 lb feed stock of Vermont Hemp (Cannabis Sativa) using Waters 5 litre Bio-Botanical Extraction System (Figure 4), controlled by ChromScope Software v.1.6 (Waters Corporation, Milford, MA, USA). Seeds and stems were removed from the raw hemp by hand and the buds and leaves ground, homogenised, and divided into five 4 lb bags (Figure 6). Plant and extract chromatographic analyses were performed by ProVerde Laboratories, Inc (Milford, MA, USA). A sample was analysed from each bag of bio-botanical material, with the average total cannabinoid content being 5.04 wt%.


Table 1: Bio-Botanical Extraction System method parameters for CO2


Extraction Parameters Flow Rate


Extraction Pressure


Extraction Temperature Time


Method Condition 170 g/min 344 bar 50 o C 210 min CS1


Pressure CS1


Temperature CS2


Pressure CS2


Temperature CS3


Pressure CS3


Temperature


Collection Parameters


extraction. Method Condition 138,158 bar 45 o C 75 bar 40 o C 53 bar 35 o C


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68