23
Figure 3: Zoomed in Total Ion Chromatogram from Figure 2 demonstrating (outlined) the explicit 1D co-elution resolved by the second dimension retention time (y-axis, top image). Further the partial summary table of processed results from the software indicating the Group (matches) and 2-Dimension retention times.
increase the accuracy of identification. This contour plot also shows column bleed peaks (banana shaped yellow-green trails), which are likely amplified due to the solvent used in the mixtures. Regardless of these challenges our results indicated a very high rate of successful identification.
In Figure 3, we examine one of many significant sections of 1st dimension GC co- elution separated by the second dimension of chromatography (y axis), each peak being separated by ≈ 100 msec. This is an interesting example since it shows how detailed the results can be for one area of first dimension co-elution. The table below the contour plot shows the match level assigned (Group), 1st dimension Retention Index (calculated), Mass Accuracy for the Molecular Ion (ppm), Formula, and Similarity score from the NIST library. Note that peaks # 893 and 902 did not have retention index information in the NIST library. Although all the other level A criteria passed it became a sub classification of the A Match. Peak # 898 was also an A level match but the deconvoluted mass spectra did not have a molecular ion, however the Chemical Ionisation spectrum did have that molecular ion evidence at the same retention time. The quality of the mass spectra generated in close second dimension GC proximity (200
msec) are shown in Figure 4 for Peaks 893 and 896. These two examples show greater than 900 similarity scores on comparison of deconvoluted to library spectra.
In Figure 5 for a particular set of ions you can see an increase number of deconvoluted peaks from 3 to 5 (increased peak capacity). Table 3 shows highlights the increased quality of the identifications obtained with comprehensive GCxGC. Undetected peaks in 1D are found in GCxGC with increased similarity scores and mass accuracies staying within the bounds of the forecasted accuracy
(< 5ppm). There is just one example of many cases where this occurred the frequency of this occurrence co-elution in these samples is also the subject of a future publication.
Accuracy of Identification of Standard Sample Mixtures
The final topic for discussion is the overall accuracy of the identification experiment. Figure 6 shows the blind accuracy of about 84% for all samples when comparing to the NIST available compounds. Further
Figure 4: Deconvoluted mass spectra (Peak True) and their corresponding Library spectra for Peaks 893 and 896 in Figure 3.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68