search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
11


enable accurate, close-fitting class boundaries to be defined. As shown in Figure 2, these stencils can then be applied to the FID data for quantitative analysis, assisted by the excellent retention time correspondence for parallel detection that is now possible with flow modulators for GC×GC. Additionally, the ability of ChromSpace to open multiple data files in a single window (and indeed, multiple data file formats) makes creation and translation of the stencils even easier.


Advanced Applications – Scripting and Soft EI Detection


Figure 2. Classification of C11 -alkylbenzenes in a heavy alkylate using GC×GC with dual FID/TOF MS


detection. The excellent retention-time correlation (highlighted in the left-hand panel for the selected peak) allows stencils to be transferred easily from TOF MS to FID.


Filtering scripts are simple expressions (based on mass spectral or chromatographic properties) used to extract target compounds or classes from the acquired data. They can be selected from a default list of popular chemical classes in the software, or created easily by the analyst using preconfigured buttons in the expression builder. Scripts are valuable time-saving tools even in simple analyses, but they offer particular benefits for highly complex samples investigated using the TOF MS instrument in Tandem Ionisation mode, which simultaneously generates electron ionisation spectra at both high (70 eV) and low (10–16 eV) ionisation energies. These low-energy ‘soft ionisation’ spectra typically display reduced fragmentation and enhanced structurally-significant ions, which greatly enhance the use of filtering scripts.


An example of this approach is shown in Figure 3, which shows an expression builder in the software interface that has been set up to search for spectral characteristics of C12


-alkylnaphthalenes, and application of this script to the heavy alkylate sample. Filtering scripts provide increased selectivity compared to EICs, because they only show peaks that pass the qualifier expression, meaning a clean baseline. This is in contrast to EICs, which will show all peaks with that ion in common.


References


1. R.C. Striebich, L.M. Shafer, R.K. Adams, Z.J. West, M.J. DeWitt and S. Zabarnick, Hydrocarbon group-type analysis of petroleum-derived and synthetic fuels using two-dimensional gas chromatography, Energy Fuels 28 (2014), 5696−5706.


Figure 3. Top: Scripting expression used to classify the C12 -alkylnaphthalenes. Bottom: Use of this expression


to filter the 14 eV TOF MS data from the analysis of the heavy alkylate, and generate a stencil for this compound group that can be applied to the FID data.


2. F. Adam, F. Bertoncini, D. Thiébaut, S. Esnault, D. Espinat and M.C. Hennion, Towards comprehensive hydrocarbons analysis of middle distillates by LC-GCxGC, J. Chromatogr. Sci. 45 (2007), 643–649.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68