search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
44 February / March 2018


A Systematic Approach to Developing Terpene Extraction Conditions Utilising Supercritical Carbon Dioxide


by Eric Kawka, Cattis Consulting, Montpeiler, VT 05602, kawkae3@gmail.com


Cannabis Sativa plants produce and accumulate terpene-rich resin within the secretory cells of glandular trichromes [1]. Monoterpenes and sesquiterpenes are important components of Cannabis resin as they contribute to the unique attributes of different Cannabis strains. Terpenes are responsible for the plant’s aroma and flavour.


They possess specific medical properties and may act synergistically with cannabinoids, enhancing the therapeutic benefits of the plant. The extraction of terpenes and cannabinoids from Cannabis is a function of their solubility in different organic solvents [2]. Solvents like methanol, ethanol, butane, and hexane are commonly used in Cannabis extractions. However, aside from safety considerations, extracts produced with such solvents are considered ‘one pot extractions’; no selectivity between cannabinoids and terpenes can be achieved.


Discussing terpene extraction is problematic for two reasons.


1. during post-processing, thermally labile terpenes undergo degradation reactions


2. isolation of terpenes from these solvents is difficult due to similar boiling points


Among the various extraction techniques, we explore the use of supercritical fluids (SC) as a solvent for the targeted extraction of terpenes from cannabinoids in Cannabis.


Data suggests that the interaction between cannabinoids and terpenes affects the


pharmacological properties of cannabis strains; this relationship is commonly referred to as the ‘entourage effect’ [3]. There are several promising applications based on the combined use of cannabinoids and terpenes, such as pairing cannabidiol (CBD) with the monoterpenes limonene, linalool and pinene to treat acne [4] or adding caryophyllene, linalool and myrcene to 1:1 CBD/THC extracts to treat sleeping disorders [4].


The smallest and most volatile terpenes are monoterpenes which are biosynthesised by the head-to-tail addition of two isoprene


Figure 1: (A) Five carbon isoprene unit (B) head to tail linkage of two isoprene units to form the monoterpene Myrcene (C) terpene-rich resin within the secretory cells of glandular trichromes (D) classification of terpenes based on the number of isoprene units.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68